These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 8597537)
1. Influence of targeted asparagine starvation on extra- and intracellular amino acid pools of cultivated Chinese hamster ovary cells. Seewöster T; Lehmann J Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):344-50. PubMed ID: 8597537 [TBL] [Abstract][Full Text] [Related]
2. Metabolic responses of CHO cells to limitation of key amino acids. Duarte TM; Carinhas N; Barreiro LC; Carrondo MJ; Alves PM; Teixeira AP Biotechnol Bioeng; 2014 Oct; 111(10):2095-106. PubMed ID: 24771076 [TBL] [Abstract][Full Text] [Related]
3. Extra- and intracellular amino acid concentrations in continuous Chinese hamster ovary cell culture. Hansen HA; Emborg C Appl Microbiol Biotechnol; 1994 Jul; 41(5):560-4. PubMed ID: 7765083 [TBL] [Abstract][Full Text] [Related]
4. Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Nyberg GB; Balcarcel RR; Follstad BD; Stephanopoulos G; Wang DI Biotechnol Bioeng; 1999 Feb; 62(3):336-47. PubMed ID: 10099545 [TBL] [Abstract][Full Text] [Related]
5. Selected amino acids protect hybridoma and CHO cells from elevated carbon dioxide and osmolality. deZengotita VM; Abston LR; Schmelzer AE; Shaw S; Miller WM Biotechnol Bioeng; 2002 Jun; 78(7):741-52. PubMed ID: 12001166 [TBL] [Abstract][Full Text] [Related]
6. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed-batch cultures. Ghaffari N; Jardon MA; Krahn N; Butler M; Kennard M; Turner RFB; Gopaluni B; Piret JM Biotechnol Prog; 2020 Mar; 36(2):e2946. PubMed ID: 31823468 [TBL] [Abstract][Full Text] [Related]
7. Application of a statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Castro PM; Hayter PM; Ison AP; Bull AT Appl Microbiol Biotechnol; 1992 Oct; 38(1):84-90. PubMed ID: 1369013 [TBL] [Abstract][Full Text] [Related]
8. Regulation of asparagine synthetase gene expression by amino acid starvation. Gong SS; Guerrini L; Basilico C Mol Cell Biol; 1991 Dec; 11(12):6059-66. PubMed ID: 1682798 [TBL] [Abstract][Full Text] [Related]
9. Control of misincorporation of serine for asparagine during antibody production using CHO cells. Khetan A; Huang YM; Dolnikova J; Pederson NE; Wen D; Yusuf-Makagiansar H; Chen P; Ryll T Biotechnol Bioeng; 2010 Sep; 107(1):116-23. PubMed ID: 20506364 [TBL] [Abstract][Full Text] [Related]
10. Cellular responses to individual amino-acid depletion in antibody-expressing and parental CHO cell lines. Fomina-Yadlin D; Gosink JJ; McCoy R; Follstad B; Morris A; Russell CB; McGrew JT Biotechnol Bioeng; 2014 May; 111(5):965-79. PubMed ID: 24254056 [TBL] [Abstract][Full Text] [Related]
11. Metabolic analysis of the asparagine and glutamine dynamics in an industrial Chinese hamster ovary fed-batch process. Kirsch BJ; Bennun SV; Mendez A; Johnson AS; Wang H; Qiu H; Li N; Lawrence SM; Bak H; Betenbaugh MJ Biotechnol Bioeng; 2022 Mar; 119(3):807-819. PubMed ID: 34786689 [TBL] [Abstract][Full Text] [Related]
12. Development of a fed-batch culture process for enhanced production of recombinant human antithrombin by Chinese hamster ovary cells. Kuwae S; Ohda T; Tamashima H; Miki H; Kobayashi K J Biosci Bioeng; 2005 Nov; 100(5):502-10. PubMed ID: 16384788 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a regulatory element controlling amino acid transport system L in Chinese hamster ovary cells. Collarini EJ; Campbell GS; Oxender DL J Cell Biochem; 1994 Dec; 56(4):544-9. PubMed ID: 7890812 [TBL] [Abstract][Full Text] [Related]
14. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
15. Control of amino acid transport into Chinese hamster ovary cells. Geoghegan D; Arnall C; Hatton D; Noble-Longster J; Sellick C; Senussi T; James DC Biotechnol Bioeng; 2018 Dec; 115(12):2908-2929. PubMed ID: 29987891 [TBL] [Abstract][Full Text] [Related]
16. Elevated levels of asparagine synthetase activity in physiologically and genetically derepressed Chinese hamster ovary cells are due to increased rates of enzyme synthesis. Gantt JS; Arfin SM J Biol Chem; 1981 Jul; 256(14):7311-5. PubMed ID: 6114097 [TBL] [Abstract][Full Text] [Related]
17. Selective synthesis of mitochondrial proteins by Chinese hamster ovary cells severely starved for various amino acids. Chamberlain JW; Pollard JW; Stanners CP J Cell Biol; 1984 Apr; 98(4):1603-5. PubMed ID: 6715412 [TBL] [Abstract][Full Text] [Related]
18. Dolichol metabolism in Chinese hamster ovary cells. Kaiden A; Krag SS Biochem Cell Biol; 1992 Jun; 70(6):385-9. PubMed ID: 1449705 [TBL] [Abstract][Full Text] [Related]
19. Induction of calreticulin expression in response to amino acid deprivation in Chinese hamster ovary cells. Heal R; McGivan J Biochem J; 1998 Jan; 329 ( Pt 2)(Pt 2):389-94. PubMed ID: 9425124 [TBL] [Abstract][Full Text] [Related]
20. Reconstruction of reverse transsulfuration pathway enables cysteine biosynthesis and enhances resilience to oxidative stress in Chinese Hamster Ovary cells. Chen Y; Betenbaugh MJ Metab Eng; 2023 Mar; 76():204-214. PubMed ID: 36822463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]