BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 8597577)

  • 1. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability.
    Xu F; Shin W; Brown SH; Wahleithner JA; Sundaram UM; Solomon EI
    Biochim Biophys Acta; 1996 Feb; 1292(2):303-11. PubMed ID: 8597577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile.
    Xu F; Berka RM; Wahleithner JA; Nelson BA; Shuster JR; Brown SH; Palmer AE; Solomon EI
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):63-70. PubMed ID: 9693103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into multicopper oxidase laccase from
    Agrawal K; Shankar J; Kumar R; Verma P
    J Environ Sci Health B; 2020; 55(12):1048-1060. PubMed ID: 32877269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dioxygen reactivity of laccase: dependence on laccase source, pH, and anion inhibition.
    Xu F
    Appl Biochem Biotechnol; 2001 Aug; 95(2):125-33. PubMed ID: 11694062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases.
    Xu F
    J Biol Chem; 1997 Jan; 272(2):924-8. PubMed ID: 8995383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound.
    Li K; Xu F; Eriksson KE
    Appl Environ Microbiol; 1999 Jun; 65(6):2654-60. PubMed ID: 10347057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands.
    Shimizu A; Kwon JH; Sasaki T; Satoh T; Sakurai N; Sakurai T; Yamaguchi S; Samejima T
    Biochemistry; 1999 Mar; 38(10):3034-42. PubMed ID: 10074356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta.
    Dittmer NT; Gorman MJ; Kanost MR
    Insect Biochem Mol Biol; 2009 Sep; 39(9):596-606. PubMed ID: 19576986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra.
    Reiss R; Ihssen J; Richter M; Eichhorn E; Schilling B; Thöny-Meyer L
    PLoS One; 2013; 8(6):e65633. PubMed ID: 23755261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase.
    Sulistyaningdyah WT; Ogawa J; Tanaka H; Maeda C; Shimizu S
    FEMS Microbiol Lett; 2004 Jan; 230(2):209-14. PubMed ID: 14757242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reversible change in the redox state of type I Cu in Myrothecium verrucaria bilirubin oxidase depending on pH.
    Zoppellaro G; Sakurai N; Kataoka K; Sakurai T
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1998-2000. PubMed ID: 15388981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted mutations in a Trametes villosa laccase. Axial perturbations of the T1 copper.
    Xu F; Palmer AE; Yaver DS; Berka RM; Gambetta GA; Brown SH; Solomon EI
    J Biol Chem; 1999 Apr; 274(18):12372-5. PubMed ID: 10212209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox potentials of the blue copper sites of bilirubin oxidases.
    Christenson A; Shleev S; Mano N; Heller A; Gorton L
    Biochim Biophys Acta; 2006 Dec; 1757(12):1634-41. PubMed ID: 17020746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces.
    Kiiskinen LL; Viikari L; Kruus K
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):198-204. PubMed ID: 12111146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccase-catalysed iodide oxidation in presence of methyl syringate.
    Kulys J; Bratkovskaja I; Vidziunaite R
    Biotechnol Bioeng; 2005 Oct; 92(1):124-8. PubMed ID: 16080184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a low redox potential laccase from the basidiomycete C30.
    Klonowska A; Gaudin C; Fournel A; Asso M; Le Petit J; Giorgi M; Tron T
    Eur J Biochem; 2002 Dec; 269(24):6119-25. PubMed ID: 12473107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characteristics of an enzyme with both bilirubin oxidase and laccase activities from mycelium of the basidiomycete Pleurotus ostreatus.
    Pakhadnia YG; Malinouski NI; Lapko AG
    Biochemistry (Mosc); 2009 Sep; 74(9):1027-34. PubMed ID: 19916914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds.
    Xu F; Kulys JJ; Duke K; Li K; Krikstopaitis K; Deussen HJ; Abbate E; Galinyte V; Schneider P
    Appl Environ Microbiol; 2000 May; 66(5):2052-6. PubMed ID: 10788380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.