BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8597807)

  • 1. RARE-cleavage analysis of YACs.
    Iadonato SP; Gnirke A
    Methods Mol Biol; 1996; 54():75-85. PubMed ID: 8597807
    [No Abstract]   [Full Text] [Related]  

  • 2. Construction and validation of yeast artificial chromosome contig maps by RecA-assisted restriction endonuclease cleavage.
    Lauer P; Schneider SS; Gnirke A
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11318-23. PubMed ID: 9736734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective cleavage of human DNA: RecA-assisted restriction endonuclease (RARE) cleavage.
    Ferrin LJ; Camerini-Otero RD
    Science; 1991 Dec; 254(5037):1494-7. PubMed ID: 1962209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical mapping of site-directed cleavages on single DNA molecules by the RecA-assisted restriction endonuclease technique.
    Wang YK; Huff EJ; Schwartz DC
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):165-9. PubMed ID: 7816810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assay of restriction endonucleases using oligonucleotides.
    Connolly BA; Liu HH; Parry D; Engler LE; Kurpiewski MR; Jen-Jacobson L
    Methods Mol Biol; 2001; 148():465-90. PubMed ID: 11357606
    [No Abstract]   [Full Text] [Related]  

  • 6. Physical calibration of yeast artificial chromosome contig maps by RecA-assisted restriction endonuclease (RARE) cleavage.
    Gnirke A; Iadonato SP; Kwok PY; Olson MV
    Genomics; 1994 Nov; 24(2):199-210. PubMed ID: 7698741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new affinity reagent for the site-specific, covalent attachment of DNA to active-site nucleophiles: application to the EcoRI and RsrI restriction and modification enzymes.
    Purmal AA; Shabarova ZA; Gumport RI
    Nucleic Acids Res; 1992 Jul; 20(14):3713-9. PubMed ID: 1322528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast artificial chromosome segregation from host chromosomes with similar lengths.
    Izvolsky KI; Demidov VV; Bukanov NO; Frank-Kamenetskii MD
    Nucleic Acids Res; 1998 Nov; 26(21):5011-2. PubMed ID: 9776769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylation by a mutant T2 DNA [N(6)-adenine] methyltransferase expands the usage of RecA-assisted endonuclease (RARE) cleavage.
    Minko I; Hattman S; Lloyd RS; Kossykh V
    Nucleic Acids Res; 2001 Apr; 29(7):1484-90. PubMed ID: 11266550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA nicks inflicted by restriction endonucleases are repaired by a RecA- and RecB-dependent pathway in Escherichia coli.
    Heitman J; Ivanenko T; Kiss A
    Mol Microbiol; 1999 Sep; 33(6):1141-51. PubMed ID: 10510229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of two near-kilobase resolution restriction maps of the 5' regulatory region of the human apolipoprotein B gene by quantitative DNA fiber mapping (QDFM).
    Duell T; Nielsen LB; Jones A; Young SG; Weier HU
    Cytogenet Cell Genet; 1997; 79(1-2):64-70. PubMed ID: 9533015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An EcoRI-RsrI chimeric restriction endonuclease retains parental sequence specificity.
    Chuluunbaatar T; Ivanenko-Johnston T; Fuxreiter M; Meleshko R; Raskó T; Simon I; Heitman J; Kiss A
    Biochim Biophys Acta; 2007 May; 1774(5):583-94. PubMed ID: 17442645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RecA-AC: single-site cleavage of plasmids and chromosomes at any predetermined restriction site.
    Koob M; Burkiewicz A; Kur J; Szybalski W
    Nucleic Acids Res; 1992 Nov; 20(21):5831-6. PubMed ID: 1454542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-specific recognition of cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA.
    Garcia RA; Bustamante CJ; Reich NO
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7618-22. PubMed ID: 8755524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and characterization of yeast artificial chromosome libraries from the mouse genome.
    Larin Z; Monaco AP; Meier-Ewert S; Lehrach H
    Methods Enzymol; 1993; 225():623-37. PubMed ID: 8231875
    [No Abstract]   [Full Text] [Related]  

  • 16. Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes.
    Kuspa A; Vollrath D; Cheng Y; Kaiser D
    Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8917-21. PubMed ID: 2510171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection by hybridization of trinucleotide repeat sequences in yeast artificial chromosomes.
    Nemani M; Bellanné-Chantelot C; Cohen D; Cann HM
    Biotechniques; 1995 Oct; 19(4):584-7. PubMed ID: 8777051
    [No Abstract]   [Full Text] [Related]  

  • 18. Specific cleavage of the yeast genome at 5'-ATCGATCGAT-3'.
    Waterbury PG; Rehfuss RP; Carroll WT; Smardon AM; Faldasz BD; Huckaby CS; Lane MJ
    Nucleic Acids Res; 1989 Nov; 17(22):9493. PubMed ID: 2685763
    [No Abstract]   [Full Text] [Related]  

  • 19. Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells.
    Taylor SS; Larin Z; Tyler-Smith C
    Chromosoma; 1996 Aug; 105(2):70-81. PubMed ID: 8753696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition by restriction endodeoxyribonuclease EcoRI of octadeoxyribonucleotides containing modified sugar and base moieties.
    Komatsu H; Ichikawa T; Takaku H; Yokoyama S; Kawai G
    Nucleic Acids Symp Ser; 1990; (22):95-6. PubMed ID: 2101926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.