These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8598054)

  • 1. Double-strand break-induced mitotic gene conversion: examination of tract polarity and products of multiple recombinational repair events.
    Weng YS; Whelden J; Gunn L; Nickoloff JA
    Curr Genet; 1996 Mar; 29(4):335-43. PubMed ID: 8598054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity.
    Sweetser DB; Hough H; Whelden JF; Arbuckle M; Nickoloff JA
    Mol Cell Biol; 1994 Jun; 14(6):3863-75. PubMed ID: 8196629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene-conversion tract directionality is influenced by the chromosome environment.
    Cho JW; Khalsa GJ; Nickoloff JA
    Curr Genet; 1998 Oct; 34(4):269-79. PubMed ID: 9799360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.
    Nickoloff JA; Sweetser DB; Clikeman JA; Khalsa GJ; Wheeler SL
    Genetics; 1999 Oct; 153(2):665-79. PubMed ID: 10511547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae.
    Weng YS; Nickoloff JA
    Genetics; 1998 Jan; 148(1):59-70. PubMed ID: 9475721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality.
    Nelson HH; Sweetser DB; Nickoloff JA
    Mol Cell Biol; 1996 Jun; 16(6):2951-7. PubMed ID: 8649406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional effects on double-strand break-induced gene conversion tracts.
    Weng YS; Xing D; Clikeman JA; Nickoloff JA
    Mutat Res; 2000 Oct; 461(2):119-32. PubMed ID: 11018585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marker structure and recombination substrate environment influence conversion preference of broken and unbroken alleles in Saccharomyces cerevisiae.
    Weng Y; Barton SL; Cho JW; Nickoloff JA
    Mol Genet Genomics; 2001 May; 265(3):461-8. PubMed ID: 11405629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitotic Gene Conversion Tracts Associated with Repair of a Defined Double-Strand Break in
    Hum YF; Jinks-Robertson S
    Genetics; 2017 Sep; 207(1):115-128. PubMed ID: 28743762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene conversion tracts from double-strand break repair in mammalian cells.
    Elliott B; Richardson C; Winderbaum J; Nickoloff JA; Jasin M
    Mol Cell Biol; 1998 Jan; 18(1):93-101. PubMed ID: 9418857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional.
    Palmer S; Schildkraut E; Lazarin R; Nguyen J; Nickoloff JA
    Nucleic Acids Res; 2003 Feb; 31(4):1164-73. PubMed ID: 12582235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations.
    Richardson C; Moynahan ME; Jasin M
    Genes Dev; 1998 Dec; 12(24):3831-42. PubMed ID: 9869637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells.
    Kim PM; Allen C; Wagener BM; Shen Z; Nickoloff JA
    Nucleic Acids Res; 2001 Nov; 29(21):4352-60. PubMed ID: 11691922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mismatch repair by efficient nick-directed, and less efficient mismatch-specific, mechanisms in homologous recombination intermediates in Chinese hamster ovary cells.
    Miller EM; Hough HL; Cho JW; Nickoloff JA
    Genetics; 1997 Oct; 147(2):743-53. PubMed ID: 9335609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells.
    Deng WP; Nickoloff JA
    Mol Cell Biol; 1994 Jan; 14(1):400-6. PubMed ID: 8264607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting.
    Li J; Baker MD
    J Mol Biol; 2000 Jan; 295(3):505-16. PubMed ID: 10623542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donation of information to the unbroken chromosome in double-strand break repair.
    Roitgrund C; Steinlauf R; Kupiec M
    Curr Genet; 1993; 23(5-6):414-22. PubMed ID: 8319297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-strand breaks stimulate alternative mechanisms of recombination repair.
    Nickoloff JA; Singer JD; Hoekstra MF; Heffron F
    J Mol Biol; 1989 Jun; 207(3):527-41. PubMed ID: 2668534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast Saccharomyces cerevisiae.
    Jha B; Ahne F; Eckardt-Schupp F
    Curr Genet; 1993; 23(5-6):402-7. PubMed ID: 8319296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.