BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 8598289)

  • 1. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription.
    Liu XD; Thiele DJ
    Genes Dev; 1996 Mar; 10(5):592-603. PubMed ID: 8598289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways.
    Tamai KT; Liu X; Silar P; Sosinowski T; Thiele DJ
    Mol Cell Biol; 1994 Dec; 14(12):8155-65. PubMed ID: 7969152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycogen synthase phosphatase interacts with heat shock factor to activate CUP1 gene transcription in Saccharomyces cerevisiae.
    Lin JT; Lis JT
    Mol Cell Biol; 1999 May; 19(5):3237-45. PubMed ID: 10207049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock transcription factor activates transcription of the yeast metallothionein gene.
    Silar P; Butler G; Thiele DJ
    Mol Cell Biol; 1991 Mar; 11(3):1232-8. PubMed ID: 1996089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance.
    Sewell AK; Yokoya F; Yu W; Miyagawa T; Murayama T; Winge DR
    J Biol Chem; 1995 Oct; 270(42):25079-86. PubMed ID: 7559639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase.
    Hahn JS; Thiele DJ
    J Biol Chem; 2004 Feb; 279(7):5169-76. PubMed ID: 14612437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxy-terminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase.
    Sakurai H; Hashikawa N; Imazu H; Fukasawa T
    Genes Cells; 2003 Dec; 8(12):951-61. PubMed ID: 14750950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel domain of the yeast heat shock factor that regulates its activation function.
    Sakurai H; Fukasawa T
    Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast heat shock factor contains separable transient and sustained response transcriptional activators.
    Sorger PK
    Cell; 1990 Aug; 62(4):793-805. PubMed ID: 2201452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin repositioning activity and transcription machinery are both recruited by Ace1p in yeast CUP1 activation.
    Wimalarathna RN; Pan PY; Shen CH
    Biochem Biophys Res Commun; 2012 Jun; 422(4):658-63. PubMed ID: 22609398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae.
    Gallo GJ; Schuetz TJ; Kingston RE
    Mol Cell Biol; 1991 Jan; 11(1):281-8. PubMed ID: 1986225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the Neurospora crassa heat shock factor with the heat shock element during heat shock and different developmental stages.
    Meyer U; Monnerjahn C; Techel D; Rensing L
    FEMS Microbiol Lett; 2000 Apr; 185(2):255-61. PubMed ID: 10754257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex.
    Badi L; Barberis A
    Nucleic Acids Res; 2002 Mar; 30(6):1306-15. PubMed ID: 11884627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex regulation of the yeast heat shock transcription factor.
    Bonner JJ; Carlson T; Fackenthal DL; Paddock D; Storey K; Lea K
    Mol Biol Cell; 2000 May; 11(5):1739-51. PubMed ID: 10793148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-Terminal Tail of Histone H3 Regulates Copper Homeostasis in Saccharomyces cerevisiae.
    Singh S; Sahu RK; Tomar RS
    Mol Cell Biol; 2021 Jan; 41(2):. PubMed ID: 33257505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.