These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 8598289)

  • 1. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription.
    Liu XD; Thiele DJ
    Genes Dev; 1996 Mar; 10(5):592-603. PubMed ID: 8598289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways.
    Tamai KT; Liu X; Silar P; Sosinowski T; Thiele DJ
    Mol Cell Biol; 1994 Dec; 14(12):8155-65. PubMed ID: 7969152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock transcription factor activates transcription of the yeast metallothionein gene.
    Silar P; Butler G; Thiele DJ
    Mol Cell Biol; 1991 Mar; 11(3):1232-8. PubMed ID: 1996089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycogen synthase phosphatase interacts with heat shock factor to activate CUP1 gene transcription in Saccharomyces cerevisiae.
    Lin JT; Lis JT
    Mol Cell Biol; 1999 May; 19(5):3237-45. PubMed ID: 10207049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance.
    Sewell AK; Yokoya F; Yu W; Miyagawa T; Murayama T; Winge DR
    J Biol Chem; 1995 Oct; 270(42):25079-86. PubMed ID: 7559639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase.
    Hahn JS; Thiele DJ
    J Biol Chem; 2004 Feb; 279(7):5169-76. PubMed ID: 14612437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxy-terminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase.
    Sakurai H; Hashikawa N; Imazu H; Fukasawa T
    Genes Cells; 2003 Dec; 8(12):951-61. PubMed ID: 14750950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel domain of the yeast heat shock factor that regulates its activation function.
    Sakurai H; Fukasawa T
    Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast heat shock factor contains separable transient and sustained response transcriptional activators.
    Sorger PK
    Cell; 1990 Aug; 62(4):793-805. PubMed ID: 2201452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin repositioning activity and transcription machinery are both recruited by Ace1p in yeast CUP1 activation.
    Wimalarathna RN; Pan PY; Shen CH
    Biochem Biophys Res Commun; 2012 Jun; 422(4):658-63. PubMed ID: 22609398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae.
    Gallo GJ; Schuetz TJ; Kingston RE
    Mol Cell Biol; 1991 Jan; 11(1):281-8. PubMed ID: 1986225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the Neurospora crassa heat shock factor with the heat shock element during heat shock and different developmental stages.
    Meyer U; Monnerjahn C; Techel D; Rensing L
    FEMS Microbiol Lett; 2000 Apr; 185(2):255-61. PubMed ID: 10754257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex.
    Badi L; Barberis A
    Nucleic Acids Res; 2002 Mar; 30(6):1306-15. PubMed ID: 11884627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex regulation of the yeast heat shock transcription factor.
    Bonner JJ; Carlson T; Fackenthal DL; Paddock D; Storey K; Lea K
    Mol Biol Cell; 2000 May; 11(5):1739-51. PubMed ID: 10793148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-Terminal Tail of Histone H3 Regulates Copper Homeostasis in Saccharomyces cerevisiae.
    Singh S; Sahu RK; Tomar RS
    Mol Cell Biol; 2021 Jan; 41(2):. PubMed ID: 33257505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.