These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8598348)

  • 1. Uniform distribution of satellite DNA variants on the chromosomes of tenebrionid species Alphitobius diaperinus and Tenebrio molitor.
    Bruvo B; Plohl M; Ugarković D
    Hereditas; 1995; 123(1):69-75. PubMed ID: 8598348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tenebrio obscurus satellite DNA is resistant to cleavage by restriction endonucleases in situ.
    Ugarković D; Plohl M; Petitpierre E; Lucijanić-Justić V; Juan C
    Chromosome Res; 1994 May; 2(3):217-23. PubMed ID: 8069465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for random distribution of sequence variants in Tenebrio molitor satellite DNA.
    Plohl M; Borstnik B; Lucijanić-Justić V; Ugarković D
    Genet Res; 1992 Aug; 60(1):7-13. PubMed ID: 1452016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of tandemly repeated DNA sequences in beetle chromosomes by fluorescent in situ hybridization.
    Juan C; Pons J; Petitpierre E
    Chromosome Res; 1993 Sep; 1(3):167-74. PubMed ID: 8156155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two abundant satellite DNAs from the mealworm Tenebrio obscurus.
    Plohl M; Ugarković D
    J Mol Evol; 1994 Nov; 39(5):489-95. PubMed ID: 7807538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor.
    Davis CA; Wyatt GR
    Nucleic Acids Res; 1989 Jul; 17(14):5579-86. PubMed ID: 2762148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite DNA and heterochromatin of the flour beetle Tribolium confusum.
    Plohl M; Lucijanić-Justić V; Ugarković D; Petitpierre E; Juan C
    Genome; 1993 Jun; 36(3):467-75. PubMed ID: 7688707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the heterochromatin of the darkling beetle Misolampus goudoti: cloning of two satellite DNA families and digestion of chromosomes with restriction enzymes.
    Pons J; Petitpierre E; Juan C
    Hereditas; 1993; 119(2):179-85. PubMed ID: 8106263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays.
    Modi WS
    Cytogenet Cell Genet; 1993; 62(2-3):142-8. PubMed ID: 8428514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fine structure of euchromatin and centromeric heterochromatin in Tenebrio molitor chromosomes.
    Weith A
    Chromosoma; 1985; 91(3-4):287-96. PubMed ID: 3979178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A heterochromatic satellite DNA is highly amplified in a single chromosome of Muscari (Hyacinthaceae).
    de la Herrán R; Robles F; Cuñado N; Santos JL; Ruiz Rejón M; Garrido-Ramos MA; Ruiz Rejón C
    Chromosoma; 2001 Jul; 110(3):197-202. PubMed ID: 11513294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity of structural features and evolution of satellite DNAs from palorus subdepressus (Coleoptera) and related species.
    Plohl M; Mestrovic N; Bruvo B; Ugarkovic D
    J Mol Evol; 1998 Feb; 46(2):234-9. PubMed ID: 9452525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intragenomic movement, sequence amplification and concerted evolution in satellite DNA in harvest mice, Reithrodontomys: evidence from in situ hybridization.
    Hamilton MJ; Honeycutt RL; Baker RJ
    Chromosoma; 1990 Sep; 99(5):321-9. PubMed ID: 2265569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of satellite DNA in Palorus ratzeburgii: analysis of curvature profiles and comparison with Tenebrio molitor satellite DNA.
    Ugarković DL; Plohl M; Lucijanić-Justić V; Borstnik B
    Biochimie; 1992 Dec; 74(12):1075-82. PubMed ID: 1292615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg2+-dependent compactness of heterochromatic chromosome segments.
    Weith A
    Exp Cell Res; 1983 Jun; 146(1):199-203. PubMed ID: 6861905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae).
    Palomeque T; Muñoz-López M; Carrillo JA; Lorite P
    Chromosome Res; 2005; 13(8):795-807. PubMed ID: 16331411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical perusal of the satellite DNA curvature in tenebrionid beetles.
    Barceló F; Gutiérrez F; Barjau I; Portugal J
    J Biomol Struct Dyn; 1998 Aug; 16(1):41-50. PubMed ID: 9745893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The organization of the mouse satellite DNA at centromeres.
    Joseph A; Mitchell AR; Miller OJ
    Exp Cell Res; 1989 Aug; 183(2):494-500. PubMed ID: 2767161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterochromatin Is Not the Only Place for satDNAs: The High Diversity of satDNAs in the Euchromatin of the Beetle
    Rico-Porras JM; Mora P; Palomeque T; Montiel EE; Cabral-de-Mello DC; Lorite P
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymorphic organization of constitutive heterochromatin in Equus asinus (2n = 62) chromosome 1.
    Raimondi E; Piras FM; Nergadze SG; Di Meo GP; Ruiz-Herrera A; Ponsà M; Ianuzzi L; Giulotto E
    Hereditas; 2011 Jun; 148(3):110-3. PubMed ID: 21756256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.