These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8598541)

  • 1. Chemical modification of bacterial 4-aminobutyrate aminotransferase by phenylglyoxal.
    Tunnicliff G
    J Enzyme Inhib; 1995; 9(4):309-16. PubMed ID: 8598541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of inactivation of 4-aminobutyrate aminotransferase by 3-bromopyruvate.
    Blessinger KJ; Tunnicliff G
    Biochem Cell Biol; 1992 Aug; 70(8):716-9. PubMed ID: 1476707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical inactivation of bacterial GABA aminotransferase.
    Tunnicliff G; Crites GJ
    Biochem Mol Biol Int; 1998 Sep; 46(1):43-54. PubMed ID: 9784838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of 4-aminobutyrate aminotransferase from Pseudomonas fluorescens by ATP.
    Tunnicliff G
    Biochem Mol Biol Int; 1993 Sep; 31(1):41-7. PubMed ID: 8260945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isosterism and molecular modification in drug design: tetrazole analogue of GABA: effects on enzymes of the gamma-aminobutyrate system.
    Kraus JL
    Pharmacol Res Commun; 1983 Feb; 15(2):183-9. PubMed ID: 6405400
    [No Abstract]   [Full Text] [Related]  

  • 6. Essential arginine residues at the pyridoxal phosphate binding site of brain gamma-aminobutyrate aminotransferase.
    Tunnicliff G
    Biochem Biophys Res Commun; 1980 Nov; 97(1):160-5. PubMed ID: 7458930
    [No Abstract]   [Full Text] [Related]  

  • 7. L-serine binds to arginine-148 of the beta 2 subunit of Escherichia coli tryptophan synthase.
    Tanizawa K; Miles EW
    Biochemistry; 1983 Jul; 22(15):3594-603. PubMed ID: 6412746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of L-phenylalanine oxidase from Pseudomonas sp. P-501 by phenylglyoxal. Identification of one essential arginyl residue.
    Mukouyama EB; Hirose T; Suzuki H
    J Biochem; 1998 Jun; 123(6):1097-103. PubMed ID: 9603998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the importance of cysteine and arginine residues in Pseudomonas fluorescens UK-1 pantoate dehydrogenase.
    Myöhänen T; Mäntsälä P
    Biochim Biophys Acta; 1980 Aug; 614(2):266-73. PubMed ID: 6773579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of arginine residues of rat liver S-adenosylhomocysteinase.
    Takata Y; Fujioka M
    J Biol Chem; 1983 Jun; 258(12):7374-8. PubMed ID: 6863250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of lysine and arginine residues of bovine heart 2-oxoglutarate dehydrogenase: effect on the enzyme activity and regulation.
    Ostrovtsova SA
    Acta Biochim Pol; 1998; 45(4):1031-6. PubMed ID: 10397349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal.
    Cottingham IR; Austin AJ; Slabas AR
    Biochim Biophys Acta; 1989 May; 995(3):273-8. PubMed ID: 2706276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of gamma-aminobutyric acid aminotransferase by various amine buffers.
    Hopkins MH; Bichler KA; Su T; Chamberlain CL; Silverman RB
    J Enzyme Inhib; 1992; 6(3):195-9. PubMed ID: 1284956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of arginine residues in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens: a kinetic and fluorescence study.
    Wijnands RA; Müller F; Visser AJ
    Eur J Biochem; 1987 Mar; 163(3):535-44. PubMed ID: 3104038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfinic and sulfonic analogs of gamma-aminobutyric acid and succinate semialdehyde, new substrates for the aminobutyrate aminotransferase and the succinate semialdehyde dehydrogenase of Pseudomonas fluorescens.
    De Gracia DG; Jollés-Bergeret B
    Biochim Biophys Acta; 1973 Jul; 315(1):49-60. PubMed ID: 4147571
    [No Abstract]   [Full Text] [Related]  

  • 17. Chemical modification of arginine residues of porcine muscle acylphosphatase.
    Tamura T; Mizuno Y; Shiokawa H
    Biochim Biophys Acta; 1986 Mar; 870(2):234-41. PubMed ID: 3006778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of wheat-germ aspartate transcarbamoylase by the arginine-specific reagent phenylglyoxal.
    Cole SC; Yaghmaie PA; Butterworth PJ; Yon RJ
    Biochem J; 1986 Jan; 233(1):303-6. PubMed ID: 3954732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of an arginyl residue in the nucleotide-binding site of Ca(2+)-ATPase from sarcoplasmic reticulum as seen by reaction with phenylglyoxal.
    Corbalán-García S; Teruel JA; Gómez-Fernández JC
    Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):179-85. PubMed ID: 8761469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.