These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 8599539)
1. Metabolism of cyclodextrins by Klebsiella oxytoca m5a1: purification and characterisation of a cytoplasmically located cyclodextrinase. Feederle R; Pajatsch M; Kremmer E; Böck A Arch Microbiol; 1996 Mar; 165(3):206-12. PubMed ID: 8599539 [TBL] [Abstract][Full Text] [Related]
2. Genetics of a novel starch utilisation pathway present in Klebsiella oxytoca. Fiedler G; Pajatsch M; Böck A J Mol Biol; 1996 Feb; 256(2):279-91. PubMed ID: 8594196 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic preparation of radiolabeled linear maltodextrins and cyclodextrins of high specific activity from [14C] maltose using amylomaltase, cyclodextrin glucosyltransferase and cyclodextrinase. Pajatsch M; Böck A; Boos W Carbohydr Res; 1998 Feb; 307(3-4):375-9. PubMed ID: 9675373 [TBL] [Abstract][Full Text] [Related]
4. An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities. Li X; Li D; Park KH Appl Microbiol Biotechnol; 2013 Jun; 97(12):5359-69. PubMed ID: 23001056 [TBL] [Abstract][Full Text] [Related]
5. Recombinant expression, purification, and characterization of a cyclodextrinase from Massilia timonae. Santos FCD; Barbosa-Tessmann IP Protein Expr Purif; 2019 Feb; 154():74-84. PubMed ID: 30149121 [TBL] [Abstract][Full Text] [Related]
6. Catalytic activities of intracellular dimeric neopullulanase on cyclodextrin, acarbose and maltose. Cheong KA; Kim TJ; Yoon JW; Park CS; Lee TS; Kim YB; Park KH; Kim JW Biotechnol Appl Biochem; 2002 Feb; 35(1):27-34. PubMed ID: 11834127 [TBL] [Abstract][Full Text] [Related]
7. A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. Duffner F; Bertoldo C; Andersen JT; Wagner K; Antranikian G J Bacteriol; 2000 Nov; 182(22):6331-8. PubMed ID: 11053376 [TBL] [Abstract][Full Text] [Related]
8. Recombinant cyclodextrinase from Thermococcus kodakarensis KOD1: expression, purification, and enzymatic characterization. Sun Y; Lv X; Li Z; Wang J; Jia B; Liu J Archaea; 2015; 2015():397924. PubMed ID: 25688178 [TBL] [Abstract][Full Text] [Related]
9. Preparation of malto-oligosaccharides with specific degree of polymerization by a novel cyclodextrinase from Palaeococcus pacificus. Ji H; Bai Y; Li X; Wang J; Xu X; Jin Z Carbohydr Polym; 2019 Apr; 210():64-72. PubMed ID: 30732782 [TBL] [Abstract][Full Text] [Related]
10. Identification of an alkaline-tolerant cyclodextrin-metabolizing bacterium and characterization of its cyclodextrinase gene. Kaulpiboon J; Rimphanitchayakit V; Pongsawasdi P J Basic Microbiol; 2004; 44(5):374-82. PubMed ID: 15378529 [TBL] [Abstract][Full Text] [Related]
11. Signal peptide-independent secretory expression and characterization of pullulanase from a newly isolated Klebsiella variicola SHN-1 in Escherichia coli. Chen WB; Nie Y; Xu Y Appl Biochem Biotechnol; 2013 Jan; 169(1):41-54. PubMed ID: 23129508 [TBL] [Abstract][Full Text] [Related]
12. The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. Pajatsch M; Gerhart M; Peist R; Horlacher R; Boos W; Böck A J Bacteriol; 1998 May; 180(10):2630-5. PubMed ID: 9573146 [TBL] [Abstract][Full Text] [Related]
13. Expression of cyclodextrinase gene from Paenibacillus sp. A11 in Escherichia coli and characterization of the purified cyclodextrinase. Kaulpiboon J; Pongsawasdi P J Biochem Mol Biol; 2004 Jul; 37(4):408-15. PubMed ID: 15469727 [TBL] [Abstract][Full Text] [Related]
14. Genetic and enzymatic characterization of Amy13E from Mascelli GM; Garcia CA; Gardner JG Appl Environ Microbiol; 2024 Jan; 90(1):e0152123. PubMed ID: 38084944 [TBL] [Abstract][Full Text] [Related]
15. Unusual starch degradation pathway via cyclodextrins in the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Labes A; Schönheit P J Bacteriol; 2007 Dec; 189(24):8901-13. PubMed ID: 17921308 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. Thiemann V; Dönges C; Prowe SG; Sterner R; Antranikian G Arch Microbiol; 2004 Oct; 182(2-3):226-35. PubMed ID: 15340782 [TBL] [Abstract][Full Text] [Related]
17. Properties of a cyclodextrin-specific, unusual porin from Klebsiella oxytoca. Pajatsch M; Andersen C; Mathes A; Böck A; Benz R; Engelhardt H J Biol Chem; 1999 Aug; 274(35):25159-66. PubMed ID: 10455198 [TBL] [Abstract][Full Text] [Related]
18. Overexpression and characterization of an extremely thermostable maltogenic amylase, with an optimal temperature of 100 degrees C, from the hyperthermophilic archaeon Staphylothermus marinus. Li D; Park JT; Li X; Kim S; Lee S; Shim JH; Park SH; Cha J; Lee BH; Kim JW; Park KH N Biotechnol; 2010 Sep; 27(4):300-7. PubMed ID: 20385261 [TBL] [Abstract][Full Text] [Related]
19. The malZ gene of Escherichia coli, a member of the maltose regulon, encodes a maltodextrin glucosidase. Tapio S; Yeh F; Shuman HA; Boos W J Biol Chem; 1991 Oct; 266(29):19450-8. PubMed ID: 1918057 [TBL] [Abstract][Full Text] [Related]
20. GH57 amylopullulanase from Desulfurococcus amylolyticus JCM 9188 can make highly branched cyclodextrin via its transglycosylation activity. Park YU; Jung JH; Seo DH; Jung DH; Kim JH; Seo EJ; Baek NI; Park CS Enzyme Microb Technol; 2018 Jul; 114():15-21. PubMed ID: 29685348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]