These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 8599650)
1. Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins. Carson MR; Welsh MJ Biophys J; 1995 Dec; 69(6):2443-8. PubMed ID: 8599650 [TBL] [Abstract][Full Text] [Related]
2. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
4. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
5. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. Carson MR; Travis SM; Welsh MJ J Biol Chem; 1995 Jan; 270(4):1711-7. PubMed ID: 7530246 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Gentzsch M; Aleksandrov A; Aleksandrov L; Riordan JR Biochem J; 2002 Sep; 366(Pt 2):541-8. PubMed ID: 12020354 [TBL] [Abstract][Full Text] [Related]
7. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
8. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Tsai MF; Li M; Hwang TC J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370 [TBL] [Abstract][Full Text] [Related]
9. Control of the CFTR channel's gates. Vergani P; Basso C; Mense M; Nairn AC; Gadsby DC Biochem Soc Trans; 2005 Nov; 33(Pt 5):1003-7. PubMed ID: 16246032 [TBL] [Abstract][Full Text] [Related]
10. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. Aleksandrov L; Mengos A; Chang X; Aleksandrov A; Riordan JR J Biol Chem; 2001 Apr; 276(16):12918-23. PubMed ID: 11279083 [TBL] [Abstract][Full Text] [Related]
11. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Vergani P; Lockless SW; Nairn AC; Gadsby DC Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345 [TBL] [Abstract][Full Text] [Related]
12. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer. Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640 [TBL] [Abstract][Full Text] [Related]
13. On the mechanism of MgATP-dependent gating of CFTR Cl- channels. Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Jan; 121(1):17-36. PubMed ID: 12508051 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. Csanády L; Nairn AC; Gadsby DC J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148 [TBL] [Abstract][Full Text] [Related]
15. Mutations that change the position of the putative gamma-phosphate linker in the nucleotide binding domains of CFTR alter channel gating. Berger AL; Ikuma M; Hunt JF; Thomas PJ; Welsh MJ J Biol Chem; 2002 Jan; 277(3):2125-31. PubMed ID: 11788611 [TBL] [Abstract][Full Text] [Related]
16. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
17. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing. Kloch M; Milewski M; Nurowska E; Dworakowska B; Cutting GR; Dołowy K Cell Physiol Biochem; 2010; 25(2-3):169-80. PubMed ID: 20110677 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis. Gross CH; Abdul-Manan N; Fulghum J; Lippke J; Liu X; Prabhakar P; Brennan D; Willis MS; Faerman C; Connelly P; Raybuck S; Moore J J Biol Chem; 2006 Feb; 281(7):4058-68. PubMed ID: 16361259 [TBL] [Abstract][Full Text] [Related]
19. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels. Chaves LA; Gadsby DC J Gen Physiol; 2015 Apr; 145(4):261-83. PubMed ID: 25825169 [TBL] [Abstract][Full Text] [Related]
20. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]