These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 8599674)

  • 1. Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass-->liquid transition and crystallization behavior on reheating.
    Sartor G; Hallbrucker A; Mayer E
    Biophys J; 1995 Dec; 69(6):2679-94. PubMed ID: 8599674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric studies of the kinetic unfreezing of molecular motions in hydrated lysozyme, hemoglobin, and myoglobin.
    Sartor G; Mayer E; Johari GP
    Biophys J; 1994 Jan; 66(1):249-58. PubMed ID: 8130342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorimetric study of crystal growth of ice in hydrated methemoglobin and of redistribution of the water clusters formed on melting the ice.
    Sartor G; Mayer E
    Biophys J; 1994 Oct; 67(4):1724-32. PubMed ID: 7819504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific heat of hydrated lysozyme, water's contribution to its dynamics, and criteria for glass formation of biomaterials.
    Tombari E; Johari GP
    J Chem Phys; 2013 Sep; 139(10):105102. PubMed ID: 24050369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the confined water in the dynamic crossover of hydrated lysozyme powders.
    Kurzweil-Segev Y; Greenbaum Gutina A; Popov I; Golodnitsky D; Feldman Y
    Phys Chem Chem Phys; 2016 Apr; 18(16):10992-9. PubMed ID: 27043980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FTIR spectroscopic study of the dynamics of conformational substates in hydrated carbonyl-myoglobin films via temperature dependence of the CO stretching band parameters.
    Mayer E
    Biophys J; 1994 Aug; 67(2):862-73. PubMed ID: 7948699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transformations undergone by Triton X-100 probed by differential scanning calorimetry and dielectric relaxation spectroscopy.
    Merino EG; Rodrigues C; Viciosa MT; Melo C; Sotomayor J; Dionísio M; Correia NT
    J Phys Chem B; 2011 Nov; 115(43):12336-47. PubMed ID: 21928821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition.
    Bachler J; Giebelmann J; Amann-Winkel K; Loerting T
    J Chem Phys; 2022 Aug; 157(6):064502. PubMed ID: 35963736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration of thermally denatured lysozyme studied by sorption calorimetry and differential scanning calorimetry.
    Kocherbitov V; Arnebrant T
    J Phys Chem B; 2006 May; 110(20):10144-50. PubMed ID: 16706476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water's second glass transition.
    Amann-Winkel K; Gainaru C; Handle PH; Seidl M; Nelson H; Böhmer R; Loerting T
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17720-5. PubMed ID: 24101518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlamellar waters in dimyristoylphosphatidylethanolamine-water system as studied by calorimetry and X-ray diffraction.
    Kodama M; Aoki H; Takahashi H; Hatta I
    Biochim Biophys Acta; 1997 Oct; 1329(1):61-73. PubMed ID: 9370245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calorimetric and x-ray diffraction studies of rye glucocerebroside mesomorphism.
    Lynch DV; Caffrey M; Hogan JL; Steponkus PL
    Biophys J; 1992 May; 61(5):1289-300. PubMed ID: 1600084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein--water interactions. Heat capacity of the lysozyme--water system.
    Yang PH; Rupley JA
    Biochemistry; 1979 Jun; 18(12):2654-61. PubMed ID: 444485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glass transitions in aqueous solutions of protein (bovine serum albumin).
    Shinyashiki N; Yamamoto W; Yokoyama A; Yoshinari T; Yagihara S; Kita R; Ngai KL; Capaccioli S
    J Phys Chem B; 2009 Oct; 113(43):14448-56. PubMed ID: 19799444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorimetric study of water's glass transition in nanoscale confinement, suggesting a value of 210 K for bulk water.
    Oguni M; Kanke Y; Nagoe A; Namba S
    J Phys Chem B; 2011 Dec; 115(48):14023-9. PubMed ID: 21853989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-like relaxation in hyperquenched water at < or = 140 K.
    Kohl I; Bachmann L; Hallbrucker A; Mayer E; Loerting T
    Phys Chem Chem Phys; 2005 Sep; 7(17):3210-20. PubMed ID: 16240034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of glass transition and hydration on the biological stability of dry yeast.
    Kawai K; Sato K; Lee K; Koseki S
    J Food Sci; 2021 Apr; 86(4):1343-1353. PubMed ID: 33655495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal properties of water in myoglobin crystals and solutions at subzero temperatures.
    Doster W; Bachleitner A; Dunau R; Hiebl M; Lüscher E
    Biophys J; 1986 Aug; 50(2):213-9. PubMed ID: 3741983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A water network within a protein: temperature-dependent water ligation in H64V-metmyoglobin and relaxation to deoxymyoglobin.
    Engler N; Prusakov V; Ostermann A; Parak FG
    Eur Biophys J; 2003 Feb; 31(8):595-607. PubMed ID: 12582819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques.
    Panagopoulou A; Kyritsis A; Sabater I Serra R; Gómez Ribelles JL; Shinyashiki N; Pissis P
    Biochim Biophys Acta; 2011 Dec; 1814(12):1984-96. PubMed ID: 21798376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.