These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8599689)

  • 1. Measurement of the thermal inertia of the skin using successive thermograms taken at a stepwise change in ambient radiation temperature.
    Huang J; Togawa T
    Physiol Meas; 1995 Nov; 16(4):213-25. PubMed ID: 8599689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of imaging of skin thermal properties by successive thermographic measurements at a stepwise change in ambient radiation temperature.
    Huang J; Togawa T
    Physiol Meas; 1995 Nov; 16(4):295-301. PubMed ID: 8599696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of skin thermal inertia distribution during reactive hyperaemia using a single-hood measurement system.
    Hassan M; Togawa T
    Physiol Meas; 2001 Feb; 22(1):187-200. PubMed ID: 11236879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-contact imaging of thermal properties of the skin.
    Togawa T; Saito H
    Physiol Meas; 1994 Aug; 15(3):291-8. PubMed ID: 7994207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermographic studies on patterns of skin temperature after exercise.
    Hunold S; Mietzsch E; Werner J
    Eur J Appl Physiol Occup Physiol; 1992; 65(6):550-4. PubMed ID: 1483445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of axon reflex-related vasodilation assessed by dynamic thermal imaging in healthy subjects.
    Nieuwenhoff MD; Wu Y; Huygen FJ; Schouten AC; van der Helm FC; Niehof SP
    Microvasc Res; 2016 Jul; 106():1-7. PubMed ID: 26956622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing human skin blood flow regulation in response to different local skin temperature perturbations.
    Wu Y; Nieuwenhoff MD; Huygen FJ; van der Helm FC; Niehof S; Schouten AC
    Microvasc Res; 2017 May; 111():96-102. PubMed ID: 28011052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of skin thermal properties with estimation of ambient radiation temperature.
    Otsuka K; Okada S; Hassan M; Togawa T
    IEEE Eng Med Biol Mag; 2002; 21(6):49-55. PubMed ID: 12613211
    [No Abstract]   [Full Text] [Related]  

  • 9. Suitability of frequency modulated thermal wave imaging for skin cancer detection-A theoretical prediction.
    Bhowmik A; Repaka R; Mulaveesala R; Mishra SC
    J Therm Biol; 2015 Jul; 51():65-82. PubMed ID: 25965019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of gravity on the skin thermal behavior: experimental study using dynamic infrared thermography.
    Ratovoson D; Jourdan F; Huon V
    Skin Res Technol; 2013 Feb; 19(1):e397-408. PubMed ID: 22724900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasomotor response of the human face: laser-Doppler measurements during mild hypo- and hyperthermia.
    Rasch W; Cabanac M
    Acta Physiol Scand; 1993 Apr; 147(4):431-6. PubMed ID: 8493876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function.
    Pauling JD; Shipley JA; Raper S; Watson ML; Ward SG; Harris ND; McHugh NJ
    Microvasc Res; 2012 Mar; 83(2):162-7. PubMed ID: 21763703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of blood flow on skin heating induced by millimeter wave irradiation in humans.
    Walters TJ; Ryan KL; Nelson DA; Blick DW; Mason PA
    Health Phys; 2004 Feb; 86(2):115-20. PubMed ID: 14744044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of laser Doppler perfusion imaging, laser Doppler flowmetry, and thermographic imaging for assessment of blood flow in human skin.
    Seifalian AM; Stansby G; Jackson A; Howell K; Hamilton G
    Eur J Vasc Surg; 1994 Jan; 8(1):65-9. PubMed ID: 8307219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermographic evaluation of early melanoma within the vascularized skin using combined non-Newtonian blood flow and bioheat models.
    Bhowmik A; Repaka R; Mishra SC
    Comput Biol Med; 2014 Oct; 53():206-19. PubMed ID: 25173809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using skin temperature gradients or skin heat flux measurements to determine thresholds of vasoconstriction and vasodilatation.
    House JR; Tipton MJ
    Eur J Appl Physiol; 2002 Nov; 88(1-2):141-5. PubMed ID: 12436282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducibility of infrared thermography measurements in healthy individuals.
    Zaproudina N; Varmavuo V; Airaksinen O; Närhi M
    Physiol Meas; 2008 Apr; 29(4):515-24. PubMed ID: 18401069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of mean skin temperature formulas by infrared thermography.
    Choi JK; Miki K; Sagawa S; Shiraki K
    Int J Biometeorol; 1997 Nov; 41(2):68-75. PubMed ID: 9429341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach.
    Sagaidachnyi AA; Fomin AV; Usanov DA; Skripal AV
    Physiol Meas; 2017 Feb; 38(2):272-288. PubMed ID: 28099162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between skin blood flow and sweating rate in prepubertal boys and young men.
    Shibasaki M; Inoue Y; Kondo N; Aoki K; Hirata K
    Acta Physiol Scand; 1999 Oct; 167(2):105-10. PubMed ID: 10571545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.