These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 86)

  • 1. Hybrids of chemical derivatives of Escherichia coli alkaline phosphatase.
    Meighen E; Yue R
    Biochim Biophys Acta; 1975 Dec; 412(2):262-72. PubMed ID: 86
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative interactions in hybrids of aspartate transcarbamylase containing succinylated regulatory polypeptide chains.
    Nagel GM; Schachman HK
    Biochemistry; 1975 Jul; 14(14):3195-203. PubMed ID: 1096938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for histidyl residues at the Zn2+ binding sites of monomeric and dimeric forms of alkaline phosphatase.
    McCracken S; Meighen EA
    J Biol Chem; 1981 Apr; 256(8):3945-50. PubMed ID: 7012146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid Escherichia coli alkaline phosphatase formed on proteolysis.
    Olafsdottir S; Chlebowski JF
    J Biol Chem; 1989 Mar; 264(8):4529-35. PubMed ID: 2494174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of the alpha and beta subunits of Escherichia coli succinyl coenzyme A synthetase and their recombination into active enzyme.
    Pearson PH; Bridger WA
    J Biol Chem; 1975 Jun; 250(12):4451-5. PubMed ID: 1095571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of substrate hydrolysis by molecular variants of Escherichia coli alkaline phosphatase.
    Bloch W; Schlesinger MJ
    J Biol Chem; 1974 Mar; 249(6):1760-8. PubMed ID: 4594238
    [No Abstract]   [Full Text] [Related]  

  • 7. Essential arginyl residues in Escherichia coli alkaline phosphatase.
    Daemen FJ; Riordan JF
    Biochemistry; 1974 Jul; 13(14):2865-71. PubMed ID: 4601722
    [No Abstract]   [Full Text] [Related]  

  • 8. Sequential chemical modifications of tyrosyl residues in alkaline phosphatase of Escherichia coli.
    Christen P; Vallee BL; Simpson RT
    Biochemistry; 1971 Apr; 10(8):1377-84. PubMed ID: 4325600
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation of hybrid concanavalin A molecules by subunit exchange.
    Fraser AR; Wang JL; Edelman GM
    J Biol Chem; 1976 Aug; 251(15):4622-8. PubMed ID: 947899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc stoichiometry in Escherichia coli alkaline phosphatase. Studies by 31P NMR and ion-exchange chromatography.
    Bock JL; Kowalsky A
    Biochim Biophys Acta; 1978 Sep; 526(1):135-46. PubMed ID: 28775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-Asparaginase from Erwinia carotovora. Physicochemical properties of the native and succinylated enzyme.
    Shifrin S; Solis BG; Chalken IM
    J Biol Chem; 1973 May; 248(10):3464-9. PubMed ID: 4573979
    [No Abstract]   [Full Text] [Related]  

  • 12. F0 portion of Escherichia coli ATP synthase: orientation of subunit c in the membrane.
    Deckers-Hebestreit G; Schmid R; Kiltz HH; Altendorf K
    Biochemistry; 1987 Aug; 26(17):5486-92. PubMed ID: 2890375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypsin modification of Escherichia coli alkaline phosphatase.
    Roberts CH; Chlebowski JF
    J Biol Chem; 1984 Jan; 259(2):729-33. PubMed ID: 6363407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies of tyrosine modification in pancreatic phospholipases. 2. Properties of the nitrotyrosyl, aminotyrosyl, and dansylaminotyrosyl derivatives of pig, horse, and ox phospholipases A2 and their zymogens.
    Meyer H; Puijk WC; Dijkman R; Foda-van der Hoorn MM; Pattus F; Slotboom AJ; de Haas GH
    Biochemistry; 1979 Aug; 18(16):3589-97. PubMed ID: 38834
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystals of a trypsin-modified alkaline phosphatase. Preliminary crystallographic characterization.
    Olafsdottir S; Wright C; Wright HT; Chlebowski JF
    J Biol Chem; 1988 Jul; 263(20):10002-4. PubMed ID: 3290205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of tetranitromethane with lutropin, oxytocin, and vasopressin.
    Burleigh BD; Liu WK; Ward DN
    J Biol Chem; 1976 Jan; 251(2):308-15. PubMed ID: 1245474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis of a step of the overall reaction by the alpha subunit of Escherichia coli succinyl coenzyme A synthetase.
    Pearson PH; Bridger WA
    J Biol Chem; 1975 Nov; 250(21):8524-9. PubMed ID: 1104606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of active hybrid enzymes composed of the native and chemically inactivated aspartase subunits from Escherichia coli.
    Imaishi H; Yumoto N; Tokushige M
    Biotechnol Appl Biochem; 1990 Apr; 12(2):196-205. PubMed ID: 2184840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine modification of glucose dehydrogenase from Bacillus megaterium. Effect of tetranitromethane on the enzyme in the tetrameric and monomeric state.
    Fröschle M; Ulmer W; Jany KD
    Eur J Biochem; 1984 Aug; 142(3):533-40. PubMed ID: 6432532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.