These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 8600982)
1. Different mechanisms of formation of glutathione-protein mixed disulfides of diamide and tert-butyl hydroperoxide in rat blood. Di Simplicio P; Lupis E; Rossi R Biochim Biophys Acta; 1996 Mar; 1289(2):252-60. PubMed ID: 8600982 [TBL] [Abstract][Full Text] [Related]
2. The time-course of mixed disulfide formation between GSH and proteins in rat blood after oxidative stress with tert-butyl hydroperoxide. Di Simplicio P; Rossi R Biochim Biophys Acta; 1994 Apr; 1199(3):245-52. PubMed ID: 8161563 [TBL] [Abstract][Full Text] [Related]
3. Role of protein -SH groups in redox homeostasis--the erythrocyte as a model system. Di Simplicio P; Cacace MG; Lusini L; Giannerini F; Giustarini D; Rossi R Arch Biochem Biophys; 1998 Jul; 355(2):145-52. PubMed ID: 9675020 [TBL] [Abstract][Full Text] [Related]
4. A comparison of protein S-thiolation (protein mixed-disulfide formation) in heart cells treated with t-butyl hydroperoxide or diamide. Collison MW; Beidler D; Grimm LM; Thomas JA Biochim Biophys Acta; 1986 Jan; 885(1):58-67. PubMed ID: 3942795 [TBL] [Abstract][Full Text] [Related]
5. Protein thiol modifications of human red blood cells treated with t-butyl hydroperoxide. Lii CK; Hung CN Biochim Biophys Acta; 1997 Aug; 1336(2):147-56. PubMed ID: 9305784 [TBL] [Abstract][Full Text] [Related]
6. Mechanism for the changes in levels of glutathione upon exposure of cultured mammalian cells to tertiary-butylhydroperoxide and diamide. Ochi T Arch Toxicol; 1993; 67(6):401-10. PubMed ID: 8215909 [TBL] [Abstract][Full Text] [Related]
7. Glutathione depletion and formation of glutathione-protein mixed disulfide following exposure of brain mitochondria to oxidative stress. Ravindranath V; Reed DJ Biochem Biophys Res Commun; 1990 Jun; 169(3):1075-9. PubMed ID: 2363716 [TBL] [Abstract][Full Text] [Related]
8. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages. Sutherland MW; Nelson J; Harrison G; Forman HJ Arch Biochem Biophys; 1985 Dec; 243(2):325-31. PubMed ID: 3002274 [TBL] [Abstract][Full Text] [Related]
9. Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver. Crane D; Häussinger D; Graf P; Sies H Hoppe Seylers Z Physiol Chem; 1983 Aug; 364(8):977-87. PubMed ID: 6629333 [TBL] [Abstract][Full Text] [Related]
10. Glutathione oxidation and activation of pentose phosphate cycle during hydroperoxide metabolism. A comparison of livers from fed and fasted rats. Brigelius R Hoppe Seylers Z Physiol Chem; 1983 Aug; 364(8):989-96. PubMed ID: 6629334 [TBL] [Abstract][Full Text] [Related]
11. Rat lung glutathione release: response to oxidative stress and selenium deficiency. Jenkinson SG; Spence TH; Lawrence RA; Hill KE; Duncan CA; Johnson KH J Appl Physiol (1985); 1987 Jan; 62(1):55-60. PubMed ID: 3558197 [TBL] [Abstract][Full Text] [Related]
12. Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment. Olafsdottir K; Reed DJ Biochim Biophys Acta; 1988 Mar; 964(3):377-82. PubMed ID: 3349102 [TBL] [Abstract][Full Text] [Related]
13. Hormones, glutathione status and protein S-thiolation. Sies H; Brigelius R; Graf P Adv Enzyme Regul; 1987; 26():175-89. PubMed ID: 3673705 [TBL] [Abstract][Full Text] [Related]
14. Glutathione disulfide reduction in tumor mitochondria after t-butyl hydroperoxide treatment. Brodie AE; Reed DJ Chem Biol Interact; 1992 Sep; 84(2):125-32. PubMed ID: 1394620 [TBL] [Abstract][Full Text] [Related]
15. Glutathione protection against hydrogen peroxide, tert-butyl hydroperoxide and diamide cytotoxicity in rat hepatoma-derived Fa32 cells. Dierickx PJ; Nuffel GV; Alvarez I Hum Exp Toxicol; 1999 Oct; 18(10):627-33. PubMed ID: 10557015 [TBL] [Abstract][Full Text] [Related]
16. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis. Trotta RJ; Sullivan SG; Stern A Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393 [TBL] [Abstract][Full Text] [Related]
17. K(+)-driven sinusoidal efflux of glutathione disulfide under oxidative stress in the perfused rat liver. Masuda Y; Ozaki M; Aoki S FEBS Lett; 1993 Nov; 334(1):109-13. PubMed ID: 8224210 [TBL] [Abstract][Full Text] [Related]
18. Responses of thiols to an oxidant challenge: differences between blood and tissues in the rat. Giannerini F; Giustarini D; Lusini L; Rossi R; Di Simplicio P Chem Biol Interact; 2001 Mar; 134(1):73-85. PubMed ID: 11248223 [TBL] [Abstract][Full Text] [Related]
19. Minor thiols cysteine and cysteinylglycine regulate the competition between glutathione and protein SH groups in human platelets subjected to oxidative stress. Giustarini D; Campoccia G; Fanetti G; Rossi R; Giannerini F; Lusini L; Di Simplicio P Arch Biochem Biophys; 2000 Aug; 380(1):1-10. PubMed ID: 10900126 [TBL] [Abstract][Full Text] [Related]
20. Activation of red blood cell glutathione peroxidase and morphological transformation of erythrocytes under the action of tert-butyl hydroperoxide. Zavodnik LB; Zavodnik IB; Niekurzak A; Szosland K; Bryszewska M Biochem Mol Biol Int; 1998 Mar; 44(3):577-88. PubMed ID: 9556219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]