BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8601839)

  • 1. Identification of local carboxy-terminal hydrophobic interactions essential for folding or stability of chloramphenicol acetyltransferase.
    Van der Schueren J; Robben J; Goossens K; Heremans K; Volckaert G
    J Mol Biol; 1996 Mar; 256(5):878-88. PubMed ID: 8601839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of Sindbis virus capsid mutants involving assembly and catalysis.
    Choi HK; Lee S; Zhang YP; McKinney BR; Wengler G; Rossmann MG; Kuhn RJ
    J Mol Biol; 1996 Sep; 262(2):151-67. PubMed ID: 8831786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Misfolding of chloramphenicol acetyltransferase due to carboxy-terminal truncation can be corrected by second-site mutations.
    Van der Schueren J; Robben J; Volckaert G
    Protein Eng; 1998 Dec; 11(12):1211-7. PubMed ID: 9930670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold.
    Ochoa-Leyva A; Soberón X; Sánchez F; Argüello M; Montero-Morán G; Saab-Rincón G
    J Mol Biol; 2009 Apr; 387(4):949-64. PubMed ID: 19233201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment.
    Hoylaerts MF; Ding L; Narisawa S; Van Kerckhoven S; Millan JL
    Biochemistry; 2006 Aug; 45(32):9756-66. PubMed ID: 16893177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxyl terminus is essential for intracellular folding of chloramphenicol acetyltransferase.
    Robben J; Van der Schueren J; Volckaert G
    J Biol Chem; 1993 Nov; 268(33):24555-8. PubMed ID: 8227013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding, and activity expression.
    Ueda M; Kinoshita H; Maeda SI; Zou W; Tanaka A
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):488-94. PubMed ID: 12764563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific recognition of O6-methylguanine in DNA by active site mutants of human O6-methylguanine-DNA methyltransferase.
    Hazra TK; Roy R; Biswas T; Grabowski DT; Pegg AE; Mitra S
    Biochemistry; 1997 May; 36(19):5769-76. PubMed ID: 9153417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions.
    Rogers DP; Roberts LM; Lebowitz J; Datta G; Anantharamaiah GM; Engler JA; Brouillette CG
    Biochemistry; 1998 Aug; 37(34):11714-25. PubMed ID: 9718294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology.
    Li Y; Gupta R; Cho JH; Raleigh DP
    Biochemistry; 2007 Jan; 46(4):1013-21. PubMed ID: 17240985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of DNA binding by the DnaB helicase of Escherichia coli: analysis of the roles of domain gamma in DNA binding.
    Biswas EE; Biswas SB
    Biochemistry; 1999 Aug; 38(34):10929-39. PubMed ID: 10460148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based redesign of the catalytic/metal binding site of Cfr10I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues.
    Skirgaila R; Grazulis S; Bozic D; Huber R; Siksnys V
    J Mol Biol; 1998 Jun; 279(2):473-81. PubMed ID: 9642051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal beta-sheet and the fingerprint region.
    Ouyang N; Gao YG; Hu HY; Xia ZX
    Proteins; 2006 Dec; 65(4):1021-31. PubMed ID: 17019698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertional re-activation of a chloramphenicol acetyltransferase misfolding mutant protein.
    Robben J; Van der Schueren J; Verhasselt P; Aert R; Volckaert G
    Protein Eng; 1995 Feb; 8(2):159-65. PubMed ID: 7630887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin.
    Nishimura C; Dyson HJ; Wright PE
    J Mol Biol; 2006 Jan; 355(1):139-56. PubMed ID: 16300787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the N- and C-terminal fragments of bovine pancreatic deoxyribonuclease in active protein folding.
    Chen WJ; Huang PT; Liu J; Liao TH
    Biochemistry; 2004 Aug; 43(33):10653-63. PubMed ID: 15311926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pro-sequence and Ca2+-binding: implications for folding and maturation of Ntn-hydrolase penicillin amidase from E. coli.
    Ignatova Z; Wischnewski F; Notbohm H; Kasche V
    J Mol Biol; 2005 May; 348(4):999-1014. PubMed ID: 15843029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorrect folding of steroidogenic acute regulatory protein (StAR) in congenital lipoid adrenal hyperplasia.
    Bose HS; Baldwin MA; Miller WL
    Biochemistry; 1998 Jul; 37(27):9768-75. PubMed ID: 9657690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.