These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8602164)

  • 21. An antisense/target RNA duplex or a strong intramolecular RNA structure 5' of a translation initiation signal blocks ribosome binding: the case of plasmid R1.
    Malmgren C; Engdahl HM; Romby P; Wagner EG
    RNA; 1996 Oct; 2(10):1022-32. PubMed ID: 8849778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In the absence of translation, RNase E can bypass 5' mRNA stabilizers in Escherichia coli.
    Joyce SA; Dreyfus M
    J Mol Biol; 1998 Sep; 282(2):241-54. PubMed ID: 9735284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNase III autoregulation: structure and function of rncO, the posttranscriptional "operator".
    Matsunaga J; Simons EL; Simons RW
    RNA; 1996 Dec; 2(12):1228-40. PubMed ID: 8972772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metastable structures and refolding kinetics in hok mRNA of plasmid R1.
    Nagel JH; Gultyaev AP; Gerdes K; Pleij CW
    RNA; 1999 Nov; 5(11):1408-18. PubMed ID: 10580469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable hok, srnB and pndA effector messenger RNAs.
    Gerdes K; Nielsen A; Thorsted P; Wagner EG
    J Mol Biol; 1992 Aug; 226(3):637-49. PubMed ID: 1380562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processing of a polycistronic mRNA requires a 5' cis element and active translation.
    Alifano P; Piscitelli C; Blasi V; Rivellini F; Nappo AG; Bruni CB; Carlomagno MS
    Mol Microbiol; 1992 Mar; 6(6):787-98. PubMed ID: 1374148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3'-end triggers structural rearrangements that allow translation and antisense RNA binding.
    Franch T; Gultyaev AP; Gerdes K
    J Mol Biol; 1997 Oct; 273(1):38-51. PubMed ID: 9367744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of post-segregational killing by hok-homologue pnd of plasmid R483: two translational control elements in the pnd mRNA.
    Nielsen AK; Gerdes K
    J Mol Biol; 1995 Jun; 249(2):270-82. PubMed ID: 7783193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The tra region of the nopaline-type Ti plasmid is a chimera with elements related to the transfer systems of RSF1010, RP4, and F.
    Farrand SK; Hwang I; Cook DM
    J Bacteriol; 1996 Jul; 178(14):4233-47. PubMed ID: 8763953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The hok mRNA family.
    Steif A; Meyer IM
    RNA Biol; 2012 Dec; 9(12):1399-404. PubMed ID: 23324554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Closely spaced and divergent promoters for an aminoacyl-tRNA synthetase gene and a tRNA operon in Escherichia coli. Transcriptional and post-transcriptional regulation of gltX, valU and alaW.
    Brun YV; Sanfaçon H; Breton R; Lapointe J
    J Mol Biol; 1990 Aug; 214(4):845-64. PubMed ID: 2201777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attenuation and processing of RNA from the rplJL--rpoBC transcription unit of Escherichia coli.
    Barry G; Squires C; Squires CL
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3331-5. PubMed ID: 6158044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens.
    Shirasu K; Kado CI
    FEMS Microbiol Lett; 1993 Aug; 111(2-3):287-94. PubMed ID: 8405938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple hok genes on the chromosome of Escherichia coli.
    Pedersen K; Gerdes K
    Mol Microbiol; 1999 Jun; 32(5):1090-102. PubMed ID: 10361310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracistronic transcriptional polarity enhances translational repression: a new role for Rho.
    de Smit MH; Verlaan PW; van Duin J; Pleij CW
    Mol Microbiol; 2008 Sep; 69(5):1278-89. PubMed ID: 19172759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extensive reshaping of bacterial operons by programmed mRNA decay.
    Dar D; Sorek R
    PLoS Genet; 2018 Apr; 14(4):e1007354. PubMed ID: 29668692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential decay of RNA of the CFA/I fimbrial operon and control of relative gene expression.
    Jordi BJ; op den Camp IE; de Haan LA; van der Zeijst BA; Gaastra W
    J Bacteriol; 1993 Dec; 175(24):7976-81. PubMed ID: 7504669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Escherichia coli cell division inhibitor DicF-RNA of the dicB operon. Evidence for its generation in vivo by transcription termination and by RNase III and RNase E-dependent processing.
    Faubladier M; Cam K; Bouché JP
    J Mol Biol; 1990 Apr; 212(3):461-71. PubMed ID: 1691299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the half-life of ribosomal protein messenger RNA caused by translational repression.
    Cole JR; Nomura M
    J Mol Biol; 1986 Apr; 188(3):383-92. PubMed ID: 2426454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.