BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8602411)

  • 1. Anaerobic metabolism during electrical stimulation of aged rat skeletal muscle.
    Hopp JF
    Phys Ther; 1996 Mar; 76(3):260-7. PubMed ID: 8602411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic energy provision in aged skeletal muscle during tetanic stimulation.
    Campbell CB; Marsh DR; Spriet LL
    J Appl Physiol (1985); 1991 Apr; 70(4):1787-95. PubMed ID: 1829080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hindlimb unweighting on anaerobic metabolism in rat skeletal muscle.
    Marsh DR; Campbell CB; Spriet LL
    J Appl Physiol (1985); 1992 Apr; 72(4):1304-10. PubMed ID: 1592719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of electrical stimulation on intracellular triacylglycerol in isolated skeletal muscle.
    Hopp JF; Palmer WK
    J Appl Physiol (1985); 1990 Jan; 68(1):348-54. PubMed ID: 2312476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic energy release in skeletal muscle during electrical stimulation in men.
    Spriet LL; Söderlund K; Bergström M; Hultman E
    J Appl Physiol (1985); 1987 Feb; 62(2):611-5. PubMed ID: 3558220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lipid infusion on metabolism and force of rat skeletal muscles during intense contractions.
    Silveira L; Hirabara SM; Alberici LC; Lambertucci RH; Peres CM; Takahashi HK; Pettri A; Alba-Loureiro T; Luchessi AD; Cury-Boaventura MF; Vercesi AE; Curi R
    Cell Physiol Biochem; 2007; 20(1-4):213-26. PubMed ID: 17595530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycogen content has no effect on skeletal muscle glycogenolysis during short-term tetanic stimulation.
    Spriet LL; Berardinucci L; Marsh DR; Campbell CB; Graham TE
    J Appl Physiol (1985); 1990 May; 68(5):1883-8. PubMed ID: 2361890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical stimulation alters fatty acid metabolism in isolated skeletal muscle.
    Hopp JF; Palmer WK
    J Appl Physiol (1985); 1990 Jun; 68(6):2473-81. PubMed ID: 2200780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative and glycolytic ATP formation of rabbit papillary muscle in oxygen and nitrogen.
    Mast F; Elzinga G
    Am J Physiol; 1990 Apr; 258(4 Pt 2):H1144-50. PubMed ID: 2331002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic metabolism in human skeletal muscle during short-term, intense activity.
    Spriet LL
    Can J Physiol Pharmacol; 1992 Jan; 70(1):157-65. PubMed ID: 1581850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lactic acid accumulation and ATP decrease on muscle tension and relaxation.
    Sahlin K; Edström L; Sjöholm H; Hultman E
    Am J Physiol; 1981 Mar; 240(3):C121-6. PubMed ID: 7212053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.
    Lanza IR; Befroy DE; Kent-Braun JA
    J Appl Physiol (1985); 2005 Nov; 99(5):1736-44. PubMed ID: 16002769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile properties, fatiguability and glycolytic metabolism in fast- and slow-twitch rat skeletal muscles of various temperatures.
    Blomstrand E; Larsson L; Edström L
    Acta Physiol Scand; 1985 Oct; 125(2):235-43. PubMed ID: 4072708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle.
    Ihlemann J; Ploug T; Hellsten Y; Galbo H
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E862-7. PubMed ID: 11001769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early metabolic adaptations of rabbit fast-twitch muscle to chronic low-frequency stimulation.
    Green HJ; Pette D
    Eur J Appl Physiol Occup Physiol; 1997; 75(5):418-24. PubMed ID: 9189729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP utilization and force during intermittent and continuous muscle contractions.
    Chasiotis D; Bergström M; Hultman E
    J Appl Physiol (1985); 1987 Jul; 63(1):167-74. PubMed ID: 3624122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle.
    Meyer RA; Brown TR; Krilowicz BL; Kushmerick MJ
    Am J Physiol; 1986 Feb; 250(2 Pt 1):C264-74. PubMed ID: 3953780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.