These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8602670)

  • 1. Prolonged d-tubocurarine infusion and/or immobilization cause upregulation of acetylcholine receptors and hyperkalemia to succinylcholine in rats.
    Yanez P; Martyn JA
    Anesthesiology; 1996 Feb; 84(2):384-91. PubMed ID: 8602670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. d-Tubocurarine accentuates the burn-induced upregulation of nicotinic acetylcholine receptors at the muscle membrane.
    Kim C; Hirose M; Martyn JA
    Anesthesiology; 1995 Aug; 83(2):309-15. PubMed ID: 7631953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance and upregulation of acetylcholine receptors follow chronic infusion of d-tubocurarine.
    Hogue CW; Ward JM; Itani MS; Martyn JA
    J Appl Physiol (1985); 1992 Apr; 72(4):1326-31. PubMed ID: 1592722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal injury induces greater resistance to d-tubocurarine in local rather than in distant muscles in the rat.
    Ibebunjo C; Martyn JA
    Anesth Analg; 2000 Nov; 91(5):1243-9. PubMed ID: 11049916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms.
    Martyn JA; Richtsfeld M
    Anesthesiology; 2006 Jan; 104(1):158-69. PubMed ID: 16394702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Up-and-down regulation of skeletal muscle acetylcholine receptors. Effects on neuromuscular blockers.
    Martyn JA; White DA; Gronert GA; Jaffe RS; Ward JM
    Anesthesiology; 1992 May; 76(5):822-43. PubMed ID: 1575351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for the paradoxical resistance to d-tubocurarine during immobilization-induced muscle atrophy.
    Ibebunjo C; Nosek MT; Itani MS; Martyn JA
    J Pharmacol Exp Ther; 1997 Nov; 283(2):443-51. PubMed ID: 9353356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Neuromuscular effects of vecuronium d-tubocurarine and succinylcholine in malnourished rat's diaphragm].
    Tajiri O
    Masui; 1996 May; 45(5):586-92. PubMed ID: 8847785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance to d-tubocurarine in lower motor neuron injury is related to increased acetylcholine receptors at the neuromuscular junction.
    Hogue CW; Itani MS; Martyn JA
    Anesthesiology; 1990 Oct; 73(4):703-9. PubMed ID: 2221439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous administration of pyridostigmine improves immobilization-induced neuromuscular weakness.
    Frick CG; Helming M; Martyn JA; Blobner M; Fink H
    Crit Care Med; 2010 Mar; 38(3):922-7. PubMed ID: 20009758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prednisolone-induced muscle dysfunction is caused more by atrophy than by altered acetylcholine receptor expression.
    Shin YS; Fink H; Khiroya R; Ibebunjo C; Martyn J
    Anesth Analg; 2000 Aug; 91(2):322-8. PubMed ID: 10910842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Succinylcholine-induced hyperkalemia following prolonged pharmacologic neuromuscular blockade.
    Markewitz BA; Elstad MR
    Chest; 1997 Jan; 111(1):248-50. PubMed ID: 8996027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prolonged duration of succinylcholine in patients receiving anticonvulsants: evidence for mild up-regulation of acetylcholine receptors?
    Melton AT; Antognini JF; Gronert GA
    Can J Anaesth; 1993 Oct; 40(10):939-42. PubMed ID: 8222033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic intraperitoneal endotoxin treatment in rats induces resistance to d-tubocurarine, but does not produce up-regulation of acetylcholine receptors.
    Hinohara H; Morita T; Okano N; Kunimoto F; Goto F
    Acta Anaesthesiol Scand; 2003 Mar; 47(3):335-41. PubMed ID: 12648201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic and clinical pharmacology of the acetylcholine receptor: implications for the use of neuromuscular relaxants.
    Martyn JA
    Keio J Med; 1995 Mar; 44(1):1-8. PubMed ID: 7760531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinylcholine-induced hyperkalemia in the rat following radiation injury to muscle.
    Cairoli VJ; Ivankovich AD; Vucicevic D; Patel K
    Anesth Analg; 1982 Feb; 61(2):83-6. PubMed ID: 7198882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective antagonism to succinylcholine-induced depolarization by alpha-bungarotoxin with respect to the mode of action of depolarizing agents.
    Chang CC; Chiou LC; Hwang LL
    Br J Pharmacol; 1989 Dec; 98(4):1413-9. PubMed ID: 2611499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of chronic tacrine therapy on d-tubocurarine blockade in the soleus and tibialis muscles of the rat.
    Ibebunjo C; Donati F; Fox GS; Eshelby D; Tchervenkov JI
    Anesth Analg; 1997 Aug; 85(2):431-6. PubMed ID: 9249126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber atrophy, but not changes in acetylcholine receptor expression, contributes to the muscle dysfunction after immobilization.
    Ibebunjo C; Martyn JA
    Crit Care Med; 1999 Feb; 27(2):275-85. PubMed ID: 10075050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased sensitivity to depolarization and nondepolarizing neuromuscular blocking agents in young rat hemidiaphragms.
    Fortier LP; Robitaille R; Donati F
    Anesthesiology; 2001 Aug; 95(2):478-84. PubMed ID: 11506123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.