These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 8603477)
1. Induction of oxidative DNA damage by ferric iron in mammalian cells. Hartwig A; Schlepegrell R Carcinogenesis; 1995 Dec; 16(12):3009-13. PubMed ID: 8603477 [TBL] [Abstract][Full Text] [Related]
2. Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchanges. Hartwig A; Klyszcz-Nasko H; Schlepegrell R; Beyersmann D Carcinogenesis; 1993 Jan; 14(1):107-12. PubMed ID: 8425256 [TBL] [Abstract][Full Text] [Related]
3. Protective role of zinc-metallothionein on DNA damage in vitro by ferric nitrilotriacetate (Fe-NTA) and ferric salts. Cai L; Tsiapalis G; Cherian MG Chem Biol Interact; 1998 Sep; 115(2):141-51. PubMed ID: 9826946 [TBL] [Abstract][Full Text] [Related]
4. Mutagenic effects of ferric nitrilotriacetate (Fe-NTA) on V79 Chinese hamster cells and its inhibitory effects on cell-cell communication. Nakatsuka S; Tanaka H; Namba M Carcinogenesis; 1990 Feb; 11(2):257-60. PubMed ID: 2302753 [TBL] [Abstract][Full Text] [Related]
5. Cytotoxic and mutagenic effects of ferric nitrilotriacetate on L5178Y mouse lymphoma cells. Toyokuni S; Sagripanti JL; Hitchins VM Cancer Lett; 1995 Jan; 88(2):157-62. PubMed ID: 7874688 [TBL] [Abstract][Full Text] [Related]
6. Influence of iron-overload on DNA damage and its repair in human leukocytes in vitro. Park JH; Park E Mutat Res; 2011 Jan; 718(1-2):56-61. PubMed ID: 20974287 [TBL] [Abstract][Full Text] [Related]
7. Protective effects of fucoxanthin against ferric nitrilotriacetate-induced oxidative stress in murine hepatic BNL CL.2 cells. Liu CL; Liang AL; Hu ML Toxicol In Vitro; 2011 Oct; 25(7):1314-9. PubMed ID: 21569835 [TBL] [Abstract][Full Text] [Related]
8. Ferric iron increases ROS formation, modulates cell growth and enhances genotoxic damage by 4-hydroxynonenal in human colon tumor cells. Knöbel Y; Glei M; Osswald K; Pool-Zobel BL Toxicol In Vitro; 2006 Sep; 20(6):793-800. PubMed ID: 16412607 [TBL] [Abstract][Full Text] [Related]
9. DNA single- and double-strand breaks produced by ferric nitrilotriacetate in relation to renal tubular carcinogenesis. Toyokuni S; Sagripanti JL Carcinogenesis; 1993 Feb; 14(2):223-7. PubMed ID: 8435863 [TBL] [Abstract][Full Text] [Related]
10. Different mechanisms between copper and iron in catecholamines-mediated oxidative DNA damage and disruption of gene expression in vitro. Nishino Y; Ando M; Makino R; Ueda K; Okamoto Y; Kojima N Neurotox Res; 2011 Jul; 20(1):84-92. PubMed ID: 21053114 [TBL] [Abstract][Full Text] [Related]
11. Effects of antioxidants on V79 Chinese hamster cells treated with ferric nitrilotriacetate. Takehara Y; Yoshioka T; Namba M Acta Med Okayama; 1990 Dec; 44(6):287-91. PubMed ID: 1963729 [TBL] [Abstract][Full Text] [Related]
12. Differential role of hydrogen peroxide and organic hydroperoxides in augmenting ferric nitrilotriacetate (Fe-NTA)-mediated DNA damage: implications for carcinogenesis. Iqbal M; Sharma SD; Mizote A; Fujisawa M; Okada S Teratog Carcinog Mutagen; 2003; Suppl 1():13-21. PubMed ID: 12616593 [TBL] [Abstract][Full Text] [Related]
13. Low incidence of point mutations in H-, K- and N-ras oncogenes and p53 tumor suppressor gene in renal cell carcinoma and peritoneal mesothelioma of Wistar rats induced by ferric nitrilotriacetate. Nishiyama Y; Suwa H; Okamoto K; Fukumoto M; Hiai H; Toyokuni S Jpn J Cancer Res; 1995 Dec; 86(12):1150-8. PubMed ID: 8636003 [TBL] [Abstract][Full Text] [Related]
14. alpha-Tocopherol (vitamin-E) ameliorates ferric nitrilotriacetate (Fe-NTA)-dependent renal proliferative response and toxicity: diminution of oxidative stress. Iqbal M; Rezazadeh H; Ansar S; Athar M Hum Exp Toxicol; 1998 Mar; 17(3):163-71. PubMed ID: 9587785 [TBL] [Abstract][Full Text] [Related]
15. Increase in the 8-hydroxyguanine repair activity in the rat kidney after the administration of a renal carcinogen, ferric nitrilotriacetate. Yamaguchi R; Hirano T; Asami S; Sugita A; Kasai H Environ Health Perspect; 1996 May; 104 Suppl 3(Suppl 3):651-3. PubMed ID: 8781399 [TBL] [Abstract][Full Text] [Related]
16. Iron-overload induces oxidative DNA damage in the human colon carcinoma cell line HT29 clone 19A. Glei M; Latunde-Dada GO; Klinder A; Becker TW; Hermann U; Voigt K; Pool-Zobel BL Mutat Res; 2002 Aug; 519(1-2):151-61. PubMed ID: 12160900 [TBL] [Abstract][Full Text] [Related]
17. Induction of hepatic and renal metallothionein synthesis by ferric nitrilotriacetate in mice: the role of MT as an antioxidant. Min KS; Morishita F; Tetsuchikawahara N; Onosaka S Toxicol Appl Pharmacol; 2005 Apr; 204(1):9-17. PubMed ID: 15781289 [TBL] [Abstract][Full Text] [Related]
18. Formation of 8-hydroxydeoxyguanosine (8-OH-dG) in rat kidney DNA after intraperitoneal administration of ferric nitrilotriacetate (Fe-NTA). Umemura T; Sai K; Takagi A; Hasegawa R; Kurokawa Y Carcinogenesis; 1990 Feb; 11(2):345-7. PubMed ID: 2302761 [TBL] [Abstract][Full Text] [Related]
19. Increased 8-hydroxyguanine levels in DNA and its repair activity in rat kidney after administration of a renal carcinogen, ferric nitrilotriacetate. Yamaguchi R; Hirano T; Asami S; Chung MH; Sugita A; Kasai H Carcinogenesis; 1996 Nov; 17(11):2419-22. PubMed ID: 8968057 [TBL] [Abstract][Full Text] [Related]
20. Sensitive analysis of oxidative DNA damage in mammalian cells: use of the bacterial Fpg protein in combination with alkaline unwinding. Hartwig A; Dally H; Schlepegrell R Toxicol Lett; 1996 Nov; 88(1-3):85-90. PubMed ID: 8920721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]