BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8603726)

  • 41. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant.
    Guidry JJ; Moczygemba CK; Steede NK; Landry SJ; Wittung-Stafshede P
    Protein Sci; 2000 Nov; 9(11):2109-17. PubMed ID: 11152122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of replacing the conserved active-site residues His-264, Asp-312 and Arg-314 on the binding and catalytic properties of Escherichia coli citrate synthase.
    Man WJ; Li Y; O'Connor CD; Wilton DC
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):765-70. PubMed ID: 8010958
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combined thermodynamic and kinetic analysis of GroEL interacting with CXCR4 transmembrane peptides.
    Chi H; Xu B; Liu Z; Wei J; Li S; Ren H; Xu Y; Lu X; Wang X; Wang X; Huang F
    Biochim Biophys Acta Gen Subj; 2018 Jul; 1862(7):1576-1583. PubMed ID: 29627450
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Site-directed mutagenesis of citrate synthase; the role of the active-site aspartate in the binding of acetyl-CoA but not oxaloacetate.
    Handford PA; Ner SS; Bloxham DP; Wilton DC
    Biochim Biophys Acta; 1988 Apr; 953(3):232-40. PubMed ID: 3281713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Refolding kinetics of staphylococcal nuclease and its mutants in the presence of the chaperonin GroEL.
    Tsurupa GP; Ikura T; Makio T; Kuwajima K
    J Mol Biol; 1998 Apr; 277(3):733-45. PubMed ID: 9533891
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High enzymatic activity and chaperone function are mechanistically related features of the dimeric E. coli peptidyl-prolyl-isomerase FkpA.
    Ramm K; Plückthun A
    J Mol Biol; 2001 Jul; 310(2):485-98. PubMed ID: 11428902
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of the coupled reaction catalysed by a fusion protein of yeast mitochondrial malate dehydrogenase and citrate synthase.
    Pettersson H; Olsson P; Bülow L; Pettersson G
    Eur J Biochem; 2000 Aug; 267(16):5041-6. PubMed ID: 10931186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The base of the proteasome regulatory particle exhibits chaperone-like activity.
    Braun BC; Glickman M; Kraft R; Dahlmann B; Kloetzel PM; Finley D; Schmidt M
    Nat Cell Biol; 1999 Aug; 1(4):221-6. PubMed ID: 10559920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein.
    Bochkareva ES; Lissin NM; Girshovich AS
    Nature; 1988 Nov; 336(6196):254-7. PubMed ID: 2904124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissociation kinetics of the GroEL-gp31 chaperonin complex studied with Förster resonance energy transfer.
    Calmat S; Hendriks J; van Heerikhuizen H; Schmidt CF; van der Vies SM; Peterman EJ
    Biochemistry; 2009 Dec; 48(49):11692-8. PubMed ID: 19899806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative analysis of folding and substrate binding sites between regulated hexameric type II citrate synthases and unregulated dimeric type I enzymes.
    Nguyen NT; Maurus R; Stokell DJ; Ayed A; Duckworth HW; Brayer GD
    Biochemistry; 2001 Nov; 40(44):13177-87. PubMed ID: 11683626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue.
    Xu X; Kanbara K; Azakami H; Kato A
    J Biochem; 2004 May; 135(5):615-8. PubMed ID: 15173200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.
    Chatellier J; Hill F; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enzyme-substrate complexes of allosteric citrate synthase: evidence for a novel intermediate in substrate binding.
    Duckworth HW; Nguyen NT; Gao Y; Donald LJ; Maurus R; Ayed A; Bruneau B; Brayer GD
    Biochim Biophys Acta; 2013 Dec; 1834(12):2546-53. PubMed ID: 23954305
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Importance of electrostatic interactions in the rapid binding of polypeptides to GroEL.
    Perrett S; Zahn R; Stenberg G; Fersht AR
    J Mol Biol; 1997 Jun; 269(5):892-901. PubMed ID: 9223649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Renaturation of citrate synthase: influence of denaturant and folding assistants.
    Zhi W; Landry SJ; Gierasch LM; Srere PA
    Protein Sci; 1992 Apr; 1(4):522-9. PubMed ID: 1363914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissecting a bimolecular process of MgATP²- binding to the chaperonin GroEL.
    Chen J; Makabe K; Nakamura T; Inobe T; Kuwajima K
    J Mol Biol; 2011 Jul; 410(2):343-56. PubMed ID: 21620859
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complexes between chaperonin GroEL and the capsid protein of bacteriophage HK97.
    Ding Y; Duda RL; Hendrix RW; Rosenberg JM
    Biochemistry; 1995 Nov; 34(45):14918-31. PubMed ID: 7578104
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanism of GroEL/GroES folding/refolding of protein substrates revisited.
    Jones H; Preuss M; Wright M; Miller AD
    Org Biomol Chem; 2006 Apr; 4(7):1223-35. PubMed ID: 16557310
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level.
    Gupta AJ; Haldar S; Miličić G; Hartl FU; Hayer-Hartl M
    J Mol Biol; 2014 Jul; 426(15):2739-54. PubMed ID: 24816391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.