These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8603726)

  • 61. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins.
    Machida K; Fujiwara R; Tanaka T; Sakane I; Hongo K; Mizobata T; Kawata Y
    Biochim Biophys Acta; 2009 Sep; 1794(9):1344-54. PubMed ID: 19130907
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Domain-specific chaperone-induced expansion is required for beta-actin folding: a comparison of beta-actin conformations upon interactions with GroEL and tail-less complex polypeptide 1 ring complex (TRiC).
    Villebeck L; Moparthi SB; Lindgren M; Hammarström P; Jonsson BH
    Biochemistry; 2007 Nov; 46(44):12639-47. PubMed ID: 17939680
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Contribution of the C-Terminal Region of a Group II Chaperonin to its Interaction with Prefoldin and Substrate Transfer.
    Zako T; Sahlan M; Fujii S; Yamamoto YY; Tai PT; Sakai K; Maeda M; Yohda M
    J Mol Biol; 2016 Jun; 428(11):2405-2417. PubMed ID: 27079363
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dissociation of the GroEL-GroES asymmetric complex is accelerated by increased cooperativity in ATP binding to the GroEL ring distal to GroES.
    Fridmann Y; Kafri G; Danziger O; Horovitz A
    Biochemistry; 2002 May; 41(18):5938-44. PubMed ID: 11980498
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mutations in the IDH2 gene encoding the catalytic subunit of the yeast NAD+-dependent isocitrate dehydrogenase can be suppressed by mutations in the CIT1 gene encoding citrate synthase and other genes of oxidative metabolism.
    Gadde DM; McCammon MT
    Arch Biochem Biophys; 1997 Aug; 344(1):139-49. PubMed ID: 9244391
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterisation of mutations in GroES that allow GroEL to function as a single ring.
    Liu H; Kovács E; Lund PA
    FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate dehydrogenase.
    Lindbladh C; Rault M; Hagglund C; Small WC; Mosbach K; Bülow L; Evans C; Srere PA
    Biochemistry; 1994 Oct; 33(39):11692-8. PubMed ID: 7918385
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Protein-protein binding affinities by pulse proteolysis: application to TEM-1/BLIP protein complexes.
    Hanes MS; Ratcliff K; Marqusee S; Handel TM
    Protein Sci; 2010 Oct; 19(10):1996-2000. PubMed ID: 20669180
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The non-ionic detergent Brij 58P mimics chaperone effects.
    Krause M; Rudolph R; Schwarz E
    FEBS Lett; 2002 Dec; 532(1-2):253-5. PubMed ID: 12459500
    [TBL] [Abstract][Full Text] [Related]  

  • 70. FTIR spectroscopic analysis of the structure and stability of pig citrate synthase.
    Severcan F; Haris PI; Heaton RJ; Chapman D
    Biochem Soc Trans; 1996 May; 24(2):299S. PubMed ID: 8736957
    [No Abstract]   [Full Text] [Related]  

  • 71. Mitochondrial citrate synthase is immobilized in vivo.
    Haggie PM; Brindle KM
    J Biol Chem; 1999 Feb; 274(7):3941-5. PubMed ID: 9933583
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reactivation of denatured citrate synthase.
    Kelly SM; Price NC
    Int J Biochem; 1992 Apr; 24(4):627-30. PubMed ID: 1516735
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Detailed enzyme kinetics in terms of biochemical species: study of citrate synthase.
    Beard DA; Vinnakota KC; Wu F
    PLoS One; 2008 Mar; 3(3):e1825. PubMed ID: 18350161
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural and mechanistic studies on citrate synthase by nuclear magnetic resonance and Fourier transform infra-red spectroscopies.
    Iles RA; Davies SE; Chalmers RA; Wharton CW; White A; Sreedharan S; Phillips I; Brocklehurst K
    Biochem Soc Trans; 1990 Aug; 18(4):596-7. PubMed ID: 2276456
    [No Abstract]   [Full Text] [Related]  

  • 75. Structure of pig heart citrate synthase at 1.78 A resolution.
    Larson SB; Day JS; Nguyen C; Cudney R; McPherson A
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 May; 65(Pt 5):430-4. PubMed ID: 19407370
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Emergence of fractal geometries in the evolution of a metabolic enzyme.
    Sendker FL; Lo YK; Heimerl T; Bohn S; Persson LJ; Mais CN; Sadowska W; Paczia N; Nußbaum E; Del Carmen Sánchez Olmos M; Forchhammer K; Schindler D; Erb TJ; Benesch JLP; Marklund EG; Bange G; Schuller JM; Hochberg GKA
    Nature; 2024 Apr; 628(8009):894-900. PubMed ID: 38600380
    [TBL] [Abstract][Full Text] [Related]  

  • 77. GroEL binds a late folding intermediate of phage P22 coat protein.
    de Beus MD; Doyle SM; Teschke CM
    Cell Stress Chaperones; 2000 Jul; 5(3):163-72. PubMed ID: 11005374
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10.
    Dubaquié Y; Looser R; Fünfschilling U; Jenö P; Rospert S
    EMBO J; 1998 Oct; 17(20):5868-76. PubMed ID: 9774331
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins.
    Vinckier A; Gervasoni P; Zaugg F; Ziegler U; Lindner P; Groscurth P; Plückthun A; Semenza G
    Biophys J; 1998 Jun; 74(6):3256-63. PubMed ID: 9635779
    [TBL] [Abstract][Full Text] [Related]  

  • 80. GroEL-mediated protein folding.
    Fenton WA; Horwich AL
    Protein Sci; 1997 Apr; 6(4):743-60. PubMed ID: 9098884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.