These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 8603993)
1. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. Kiertscher SM; Roth MD J Leukoc Biol; 1996 Feb; 59(2):208-18. PubMed ID: 8603993 [TBL] [Abstract][Full Text] [Related]
2. Expression of surface antigens during the differentiation of human dendritic cells vs macrophages from blood monocytes in vitro. Santin AD; Hermonat PL; Ravaggi A; Chiriva-Internati M; Cannon MJ; Hiserodt JC; Pecorelli S; Parham GP Immunobiology; 1999 Jun; 200(2):187-204. PubMed ID: 10416127 [TBL] [Abstract][Full Text] [Related]
3. Costimulatory function of umbilical cord blood CD14+ and CD34+ derived dendritic cells. Dilioglou S; Cruse JM; Lewis RE Exp Mol Pathol; 2003 Aug; 75(1):18-33. PubMed ID: 12834622 [TBL] [Abstract][Full Text] [Related]
5. Generation of dendritic cells from adherent cells of cord blood by culture with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha. Zheng Z; Takahashi M; Narita M; Toba K; Liu A; Furukawa T; Koike T; Aizawa Y J Hematother Stem Cell Res; 2000 Aug; 9(4):453-64. PubMed ID: 10982243 [TBL] [Abstract][Full Text] [Related]
6. IL-4 and CD40 ligation affect differently the differentiation, maturation, and function of human CD34+ cell-derived CD1a+CD14- and CD1a-CD14+ dendritic cell precursors in vitro. Canque B; Camus S; Yagello M; Gluckman JC J Leukoc Biol; 1998 Aug; 64(2):235-44. PubMed ID: 9715264 [TBL] [Abstract][Full Text] [Related]
7. Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte-macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha for use in cancer immunotherapy. Morse MA; Zhou LJ; Tedder TF; Lyerly HK; Smith C Ann Surg; 1997 Jul; 226(1):6-16. PubMed ID: 9242332 [TBL] [Abstract][Full Text] [Related]
8. Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow. Jin Y; Fuller L; Ciancio G; Burke GW; Tzakis AG; Ricordi C; Miller J; Esquenzai V Hum Immunol; 2004 Feb; 65(2):93-103. PubMed ID: 14969764 [TBL] [Abstract][Full Text] [Related]
9. Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Dilioglou S; Cruse JM; Lewis RE Exp Mol Pathol; 2003 Dec; 75(3):217-27. PubMed ID: 14611813 [TBL] [Abstract][Full Text] [Related]
11. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. Caux C; Vanbervliet B; Massacrier C; Dezutter-Dambuyant C; de Saint-Vis B; Jacquet C; Yoneda K; Imamura S; Schmitt D; Banchereau J J Exp Med; 1996 Aug; 184(2):695-706. PubMed ID: 8760823 [TBL] [Abstract][Full Text] [Related]
12. CD14+CD16++ cells derived in vitro from peripheral blood monocytes exhibit phenotypic and functional dendritic cell-like characteristics. Ancuta P; Weiss L; Haeffner-Cavaillon N Eur J Immunol; 2000 Jul; 30(7):1872-83. PubMed ID: 10940876 [TBL] [Abstract][Full Text] [Related]
13. From sentinel to messenger: an extended phenotypic analysis of the monocyte to dendritic cell transition. Woodhead VE; Binks MH; Chain BM; Katz DR Immunology; 1998 Aug; 94(4):552-9. PubMed ID: 9767444 [TBL] [Abstract][Full Text] [Related]
14. Expression of CD86 on human marrow CD34(+) cells identifies immunocompetent committed precursors of macrophages and dendritic cells. Ryncarz RE; Anasetti C Blood; 1998 May; 91(10):3892-900. PubMed ID: 9573027 [TBL] [Abstract][Full Text] [Related]
15. Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHC class II+, B7-1dim, B7-2-) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Lu L; McCaslin D; Starzl TE; Thomson AW Transplantation; 1995 Dec; 60(12):1539-45. PubMed ID: 8545887 [TBL] [Abstract][Full Text] [Related]
16. Feasibility to generate monocyte-derived dendritic cell from coculture with melanoma tumor cells in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Kim YT; Hersh EM; Trevor KT Am J Reprod Immunol; 2003 Apr; 49(4):230-8. PubMed ID: 12852497 [TBL] [Abstract][Full Text] [Related]
17. CpG-independent synergistic induction of beta-chemokines and a dendritic cell phenotype by orthophosphorothioate oligodeoxynucleotides and granulocyte-macrophage colony-stimulating factor in elutriated human primary monocytes. Wang J; Alvarez R; Roderiquez G; Guan E; Caldwell Q; Wang J; Phelan M; Norcross MA J Immunol; 2005 May; 174(10):6113-21. PubMed ID: 15879106 [TBL] [Abstract][Full Text] [Related]
18. p40/LAIR-1 regulates the differentiation of peripheral blood precursors to dendritic cells induced by granulocyte-monocyte colony-stimulating factor. Poggi A; Tomasello E; Ferrero E; Zocchi MR; Moretta L Eur J Immunol; 1998 Jul; 28(7):2086-91. PubMed ID: 9692876 [TBL] [Abstract][Full Text] [Related]
19. Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study. Babatz J; Röllig C; Oelschlägel U; Zhao S; Ehninger G; Schmitz M; Bornhäuser M J Hematother Stem Cell Res; 2003 Oct; 12(5):515-23. PubMed ID: 14594508 [TBL] [Abstract][Full Text] [Related]
20. Individual and combined effect of granulocyte-macrophage colony-stimulating factor and prolactin on maturation of dendritic cells from blood monocytes under serum-free conditions. Matera L; Galetto A; Geuna M; Vekemans K; Ricotti E; Contarini M; Moro F; Basso G Immunology; 2000 May; 100(1):29-36. PubMed ID: 10809956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]