BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 8604142)

  • 21. Probing the "two-pronged plug two-holed socket" model for the mechanism of binding of the Src SH2 domain to phosphotyrosyl peptides: a thermodynamic study.
    Bradshaw JM; Grucza RA; Ladbury JE; Waksman G
    Biochemistry; 1998 Jun; 37(25):9083-90. PubMed ID: 9636054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solution structure of the C-terminal SH2 domain of the p85 alpha regulatory subunit of phosphoinositide 3-kinase.
    Siegal G; Davis B; Kristensen SM; Sankar A; Linacre J; Stein RC; Panayotou G; Waterfield MD; Driscoll PC
    J Mol Biol; 1998 Feb; 276(2):461-78. PubMed ID: 9512716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamics of phosphotyrosine peptide-peptoid hybrids binding to the p56lck SH2 domain.
    Dekker FJ; Mol NJ; Liskamp RM
    J Pept Sci; 2010 Jul; 16(7):322-8. PubMed ID: 20552566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative modes of tyrosyl phosphopeptide binding to a Src family SH2 domain: implications for regulation of tyrosine kinase activity.
    Ladbury JE; Hensmann M; Panayotou G; Campbell ID
    Biochemistry; 1996 Aug; 35(34):11062-9. PubMed ID: 8780508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the SH2 domain from the adaptor protein SHC: a model for peptide binding based on X-ray and NMR data.
    Mikol V; Baumann G; Zurini MG; Hommel U
    J Mol Biol; 1995 Nov; 254(1):86-95. PubMed ID: 7473762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of tetrapeptide ligands as inhibitors of the Src SH2 domain.
    Nam NH; Pitts RL; Sun G; Sardari S; Tiemo A; Xie M; Yan B; Parang K
    Bioorg Med Chem; 2004 Feb; 12(4):779-87. PubMed ID: 14759738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding affinities of the SH2 domains of ZAP-70, p56lck and Shc to the zeta chain ITAMs of the T-cell receptor determined by surface plasmon resonance.
    Labadia ME; Ingraham RH; Schembri-King J; Morelock MM; Jakes S
    J Leukoc Biol; 1996 May; 59(5):740-6. PubMed ID: 8656061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of non-phosphate-containing small molecular weight inhibitors of the tyrosine kinase p56 Lck SH2 domain via in silico screening against the pY + 3 binding site.
    Huang N; Nagarsekar A; Xia G; Hayashi J; MacKerell AD
    J Med Chem; 2004 Jul; 47(14):3502-11. PubMed ID: 15214778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and synthesis of conformationally constrained Grb2 SH2 domain binding peptides employing alpha-methylphenylalanyl based phosphotyrosyl mimetics.
    Oishi S; Karki RG; Kang SU; Wang X; Worthy KM; Bindu LK; Nicklaus MC; Fisher RJ; Burke TR
    J Med Chem; 2005 Feb; 48(3):764-72. PubMed ID: 15689160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformationally constrained peptide analogues of pTyr-Glu-Glu-Ile as inhibitors of the Src SH2 domain binding.
    Nam NH; Ye G; Sun G; Parang K
    J Med Chem; 2004 Jun; 47(12):3131-41. PubMed ID: 15163193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution structure of the SH2 domain of Grb2 complexed with the Shc-derived phosphotyrosine-containing peptide.
    Ogura K; Tsuchiya S; Terasawa H; Yuzawa S; Hatanaka H; Mandiyan V; Schlessinger J; Inagaki F
    J Mol Biol; 1999 Jun; 289(3):439-45. PubMed ID: 10356320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors.
    Burke TR; Yao ZJ; Liu DG; Voigt J; Gao Y
    Biopolymers; 2001; 60(1):32-44. PubMed ID: 11376431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced phosphotyrosine binding by the v-Src SH2 domain is compatible with wild-type transformation.
    Tian M; Martin GS
    Oncogene; 1996 Feb; 12(4):727-34. PubMed ID: 8632894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions.
    Pisabarro MT; Serrano L; Wilmanns M
    J Mol Biol; 1998 Aug; 281(3):513-21. PubMed ID: 9698566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular basis for regulation of Src by the docking protein p130Cas.
    Nasertorabi F; Tars K; Becherer K; Kodandapani R; Liljas L; Vuori K; Ely KR
    J Mol Recognit; 2006; 19(1):30-8. PubMed ID: 16245368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carboxymethyl-phenylalanine as a replacement for phosphotyrosine in SH2 domain binding.
    Tong L; Warren TC; Lukas S; Schembri-King J; Betageri R; Proudfoot JR; Jakes S
    J Biol Chem; 1998 Aug; 273(32):20238-42. PubMed ID: 9685372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Backbone dynamics of the C-terminal SH2 domain of the p85alpha subunit of phosphoinositide 3-kinase: effect of phosphotyrosine-peptide binding and characterization of slow conformational exchange processes.
    Kristensen SM; Siegal G; Sankar A; Driscoll PC
    J Mol Biol; 2000 Jun; 299(3):771-88. PubMed ID: 10835283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. L-O-(2-malonyl)tyrosine: a new phosphotyrosyl mimetic for the preparation of Src homology 2 domain inhibitory peptides.
    Ye B; Akamatsu M; Shoelson SE; Wolf G; Giorgetti-Peraldi S; Yan X; Roller PP; Burke TR
    J Med Chem; 1995 Oct; 38(21):4270-5. PubMed ID: 7473554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for phosphotyrosine recognition by the Src homology-2 domains of the adapter proteins SH2-B and APS.
    Hu J; Hubbard SR
    J Mol Biol; 2006 Aug; 361(1):69-79. PubMed ID: 16824542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights from the energetics of water binding at the domain-ligand interface of the Src SH2 domain.
    De Fabritiis G; Geroult S; Coveney PV; Waksman G
    Proteins; 2008 Sep; 72(4):1290-7. PubMed ID: 18384045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.