BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8604990)

  • 1. ATP-stimulated degradation of oxidatively modified superoxide dismutase by cathepsin D in cardiac tissue extracts.
    Strack PR; Waxman L; Fagan JM
    Biochem Biophys Res Commun; 1996 Feb; 219(2):348-53. PubMed ID: 8604990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of cathepsin D in a highly purified sialidase from starfish A. pectinifera.
    Kannappan R; Satoh Y; Iriyama N; Ando M; Sawada MT; Takahashi N; Furuhata K; Uda Y
    J Biochem; 2008 Jan; 143(1):117-22. PubMed ID: 17977858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): purification and characterization.
    Balti R; Hmidet N; Jellouli K; Nedjar-Arroume N; Guillochon D; Nasri M
    J Agric Food Chem; 2010 Oct; 58(19):10623-30. PubMed ID: 20843039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic activation of internalized cholera toxin within hepatic endosomes by cathepsin D.
    Merlen C; Fayol-Messaoudi D; Fabrega S; El Hage T; Servin A; Authier F
    FEBS J; 2005 Sep; 272(17):4385-97. PubMed ID: 16128808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathepsin D--a main proteolytic enzyme of the bovine vitreous.
    Galewska Z; Bańkowski E
    Rocz Akad Med Bialymst; 1994; 39():38-43. PubMed ID: 7497083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of purified cathepsin D from malignant human breast tissue.
    Bazel S; Alhadeff JA
    Int J Oncol; 1999 Feb; 14(2):315-9. PubMed ID: 9917508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of an Fc-fusion recombinant protein by host cell proteases: Identification of a CHO cathepsin D protease.
    Robert F; Bierau H; Rossi M; Agugiaro D; Soranzo T; Broly H; Mitchell-Logean C
    Biotechnol Bioeng; 2009 Dec; 104(6):1132-41. PubMed ID: 19655395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and partial characterization of ostrich skeletal muscle cathepsin D and its activity during meat maturation.
    Krause J; Tshidino SC; Ogawa T; Watanabe Y; Oosthuizen V; Somai B; Muramoto K; Naudé RJ
    Meat Sci; 2011 Mar; 87(3):196-201. PubMed ID: 21055883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based subsite specificity mapping of human cathepsin D using statine-based inhibitors.
    Majer P; Collins JR; Gulnik SV; Erickson JW
    Protein Sci; 1997 Jul; 6(7):1458-66. PubMed ID: 9232647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes: ATP potentiate HSP60 and Cu/Zn SOD expression and stimulates pI shift of peroxiredoxin II.
    Chen HB; Chan YT; Hung AC; Tsai YC; Sun SH
    J Cell Biochem; 2006 Feb; 97(2):314-26. PubMed ID: 16178011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The lysosomal pathway of prolactin degradation in the mammary gland: kinetics of prolactin hydrolysis by cathepsin D and the peptides formed thereby].
    Marinchenko GV; Khropycheva RP
    Biokhimiia; 1989 Apr; 54(4):629-39. PubMed ID: 2758071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidic lipids enhance cathepsin D cleavage of the myelin basic protein.
    Williams KR; Williams ND; Konigsberg W; Yu RK
    J Neurosci Res; 1986; 15(2):137-45. PubMed ID: 2421004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathepsin D in erythroid cells.
    Hultquist DE; Rodriguez C; Schafer DA
    Prog Clin Biol Res; 1989; 319():93-101; discussion 102-6. PubMed ID: 2695941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein degradation and lysosomal proteinases in cultured fetal rabbit cardiac myocytes.
    Decker RS; Decker ML; Thomas V
    Prog Clin Biol Res; 1985; 180():627-8. PubMed ID: 4034567
    [No Abstract]   [Full Text] [Related]  

  • 15. Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide.
    Salo DC; Lin SW; Pacifici RE; Davies KJ
    Free Radic Biol Med; 1988; 5(5-6):335-9. PubMed ID: 2476367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli.
    Davies KJ; Lin SW
    Free Radic Biol Med; 1988; 5(4):225-36. PubMed ID: 3075950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cathepsin D and an alkaline protease activities in subretinal fluid.
    Wolańska M; Bakunowicz-Lazarczyk A; Bańkowski E; Stankiewicz A
    Rocz Akad Med Bialymst; 1995; 40(2):383-9. PubMed ID: 8834622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP activation of protein degradation by extracts of crude and purified lysosomal preparations.
    Pillai S; Zull JE
    Biochim Biophys Acta; 1985 Nov; 843(1-2):92-100. PubMed ID: 3851674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An acidic kininogenase in rat ventricular myocardium.
    Moshi MJ; Zeitlin IJ; Parratt JR
    J Cardiovasc Risk; 1995 Aug; 2(4):331-7. PubMed ID: 8536151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.