These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 8605147)
1. Secondary structure and topology of a mitochondrial presequence peptide associated with negatively charged micelles. A 2D H-NMR study. Chupin V; Leenhouts JM; de Kroon AI; de Kruijff B Biochemistry; 1996 Mar; 35(10):3141-6. PubMed ID: 8605147 [TBL] [Abstract][Full Text] [Related]
2. Amphiphilicity determines binding properties of three mitochondrial presequences to lipid surfaces. Hammen PK; Gorenstein DG; Weiner H Biochemistry; 1996 Mar; 35(12):3772-81. PubMed ID: 8619998 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain. Ruan KH; Li D; Ji J; Lin YZ; Gao X Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571 [TBL] [Abstract][Full Text] [Related]
4. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection. Bader R; Bettio A; Beck-Sickinger AG; Zerbe O J Mol Biol; 2001 Jan; 305(2):307-29. PubMed ID: 11124908 [TBL] [Abstract][Full Text] [Related]
5. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein. Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107 [TBL] [Abstract][Full Text] [Related]
6. Cardiolipin modulates the secondary structure of the presequence peptide of cytochrome oxidase subunit IV: a 2D 1H-NMR study. Chupin V; Leenhouts JM; de Kroon AI; de Kruijff B FEBS Lett; 1995 Oct; 373(3):239-44. PubMed ID: 7589474 [TBL] [Abstract][Full Text] [Related]
7. PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study. Chupin V; Killian JA; Breg J; de Jongh HH; Boelens R; Kaptein R; de Kruijff B Biochemistry; 1995 Sep; 34(36):11617-24. PubMed ID: 7547893 [TBL] [Abstract][Full Text] [Related]
8. NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia. Moberg P; Nilsson S; Ståhl A; Eriksson AC; Glaser E; Mäler L J Mol Biol; 2004 Mar; 336(5):1129-40. PubMed ID: 15037074 [TBL] [Abstract][Full Text] [Related]
9. Structure, assembly, and topology of the G185R mutant of the fourth transmembrane domain of divalent metal transporter. Li F; Li H; Hu L; Kwan M; Chen G; He QY; Sun H J Am Chem Soc; 2005 Feb; 127(5):1414-23. PubMed ID: 15686373 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional structure of neuropeptide k bound to dodecylphosphocholine micelles. Dike A; Cowsik SM Biochemistry; 2006 Mar; 45(9):2994-3004. PubMed ID: 16503654 [TBL] [Abstract][Full Text] [Related]
11. Solution and membrane bound structure of a peptide derived from the protein kinase C substrate domain of neuromodulin. Wertz SL; Savino Y; Cafiso DS Biochemistry; 1996 Aug; 35(34):11104-12. PubMed ID: 8780514 [TBL] [Abstract][Full Text] [Related]
12. Structure, topology and assembly of a 32-mer peptide corresponding to the loop 3 and transmembrane domain 4 of divalent metal transporter (DMT1) in membrane-mimetic environments. Li H; Gu JD; Sun H J Inorg Biochem; 2008; 102(5-6):1257-66. PubMed ID: 18243325 [TBL] [Abstract][Full Text] [Related]
13. Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state. Luisi DL; Wu WJ; Raleigh DP J Mol Biol; 1999 Mar; 287(2):395-407. PubMed ID: 10080901 [TBL] [Abstract][Full Text] [Related]
14. NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein. Biverståhl H; Andersson A; Gräslund A; Mäler L Biochemistry; 2004 Nov; 43(47):14940-7. PubMed ID: 15554701 [TBL] [Abstract][Full Text] [Related]
15. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
16. Folding of the presequence of yeast pAPI into an amphipathic helix determines transport of the protein from the cytosol to the vacuole. Martinez E; Jimenez MA; Seguí-Real B; Vandekerckhove J; Sandoval IV J Mol Biol; 1997 Apr; 267(5):1124-38. PubMed ID: 9150401 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
18. Conformation of a beta-adrenoceptor-derived signal transducing peptide as inferred by circular dichroism and 1H NMR spectroscopy. Jung H; Windhaber R; Palm D; Schnackerz KD Biochemistry; 1996 May; 35(20):6399-405. PubMed ID: 8639586 [TBL] [Abstract][Full Text] [Related]
19. NMR conformational study of the sixth transmembrane segment of sarcoplasmic reticulum Ca2+-ATPase. Soulié S; Neumann JM; Berthomieu C; Møller JV; le Maire M; Forge V Biochemistry; 1999 May; 38(18):5813-21. PubMed ID: 10231532 [TBL] [Abstract][Full Text] [Related]
20. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides. Vagt T; Zschörnig O; Huster D; Koksch B Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]