These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8605179)
1. Direct NMR measurement of folding kinetics of a trimeric peptide. Liu X; Siegel DL; Fan P; Brodsky B; Baum J Biochemistry; 1996 Apr; 35(14):4306-13. PubMed ID: 8605179 [TBL] [Abstract][Full Text] [Related]
2. Nuclear magnetic resonance characterization of peptide models of collagen-folding diseases. Buevich A; Baum J Philos Trans R Soc Lond B Biol Sci; 2001 Feb; 356(1406):159-68. PubMed ID: 11260796 [TBL] [Abstract][Full Text] [Related]
3. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations. Stultz CM Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446 [TBL] [Abstract][Full Text] [Related]
4. NMR and CD spectroscopy show that imino acid restriction of the unfolded state leads to efficient folding. Xu Y; Hyde T; Wang X; Bhate M; Brodsky B; Baum J Biochemistry; 2003 Jul; 42(29):8696-703. PubMed ID: 12873129 [TBL] [Abstract][Full Text] [Related]
5. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture. Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034 [TBL] [Abstract][Full Text] [Related]
6. Triple-helical peptides: an approach to collagen conformation, stability, and self-association. Brodsky B; Thiagarajan G; Madhan B; Kar K Biopolymers; 2008 May; 89(5):345-53. PubMed ID: 18275087 [TBL] [Abstract][Full Text] [Related]
7. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease. Liu X; Kim S; Dai QH; Brodsky B; Baum J Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516 [TBL] [Abstract][Full Text] [Related]
8. Stability junction at a common mutation site in the collagenous domain of the mannose binding lectin. Mohs A; Li Y; Doss-Pepe E; Baum J; Brodsky B Biochemistry; 2005 Feb; 44(6):1793-9. PubMed ID: 15697204 [TBL] [Abstract][Full Text] [Related]
9. Trimeric assembly and three-dimensional structure model of the FACIT collagen COL1-NC1 junction from CD and NMR analysis. Lesage A; Penin F; Geourjon C; Marion D; van der Rest M Biochemistry; 1996 Jul; 35(30):9647-60. PubMed ID: 8703936 [TBL] [Abstract][Full Text] [Related]
10. Identification of partially disordered peptide intermediates through residue-specific NMR diffusion measurements. Li Y; Kim S; Brodsky B; Baum J J Am Chem Soc; 2005 Aug; 127(30):10490-1. PubMed ID: 16045327 [TBL] [Abstract][Full Text] [Related]
11. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides. Yang W; Battineni ML; Brodsky B Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687 [TBL] [Abstract][Full Text] [Related]
12. Backbone dynamics of (Pro-Hyp-Gly)10 and a designed collagen-like triple-helical peptide by 15N NMR relaxation and hydrogen-exchange measurements. Fan P; Li MH; Brodsky B; Baum J Biochemistry; 1993 Dec; 32(48):13299-309. PubMed ID: 8241186 [TBL] [Abstract][Full Text] [Related]
13. Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries. Li X; Suzuki K; Kanaori K; Tajima K; Kashiwada A; Hiroaki H; Kohda D; Tanaka T Protein Sci; 2000 Jul; 9(7):1327-33. PubMed ID: 10933497 [TBL] [Abstract][Full Text] [Related]
14. Nucleation and propagation of the collagen triple helix in single-chain and trimerized peptides: transition from third to first order kinetics. Boudko S; Frank S; Kammerer RA; Stetefeld J; Schulthess T; Landwehr R; Lustig A; Bächinger HP; Engel J J Mol Biol; 2002 Mar; 317(3):459-70. PubMed ID: 11922677 [TBL] [Abstract][Full Text] [Related]
15. Single proline residues can dictate the oxidative folding pathways of cysteine-rich peptides. Boulègue C; Milbradt AG; Renner C; Moroder L J Mol Biol; 2006 May; 358(3):846-56. PubMed ID: 16530224 [TBL] [Abstract][Full Text] [Related]
16. Real-time NMR investigations of triple-helix folding and collagen folding diseases. Baum J; Brodsky B Fold Des; 1997; 2(4):R53-60. PubMed ID: 9269560 [TBL] [Abstract][Full Text] [Related]
17. Site-specific NMR monitoring of cis-trans isomerization in the folding of the proline-rich collagen triple helix. Buevich AV; Dai QH; Liu X; Brodsky B; Baum J Biochemistry; 2000 Apr; 39(15):4299-308. PubMed ID: 10757978 [TBL] [Abstract][Full Text] [Related]
18. Type I collagen CNBr peptides: species and behavior in solution. Rossi A; Zuccarello LV; Zanaboni G; Monzani E; Dyne KM; Cetta G; Tenni R Biochemistry; 1996 May; 35(19):6048-57. PubMed ID: 8634246 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional NMR assignments and conformation of (Pro-Hyp-Gly)10 and a designed collagen triple-helical peptide. Li MH; Fan P; Brodsky B; Baum J Biochemistry; 1993 Jul; 32(29):7377-87. PubMed ID: 8338835 [TBL] [Abstract][Full Text] [Related]
20. Folding studies of pH-dependent collagen peptides. Lee J; Chmielewski J Chem Biol Drug Des; 2010 Feb; 75(2):161-8. PubMed ID: 20028399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]