BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 8605215)

  • 21. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange.
    Brehmer D; Rüdiger S; Gässler CS; Klostermeier D; Packschies L; Reinstein J; Mayer MP; Bukau B
    Nat Struct Biol; 2001 May; 8(5):427-32. PubMed ID: 11323718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Destabilization of peptide binding and interdomain communication by an E543K mutation in the bovine 70-kDa heat shock cognate protein, a molecular chaperone.
    Ha JH; Hellman U; Johnson ER; Li L; McKay DB; Sousa MC; Takeda S; Wernstedt C; Wilbanks SM
    J Biol Chem; 1997 Oct; 272(44):27796-803. PubMed ID: 9346924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ.
    Pierpaoli EV; Gisler SM; Christen P
    Biochemistry; 1998 Nov; 37(47):16741-8. PubMed ID: 9843444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system.
    Klostermeier D; Seidel R; Reinstein J
    J Mol Biol; 1999 Apr; 287(3):511-25. PubMed ID: 10092456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights.
    Höhfeld J
    Biol Chem; 1998 Mar; 379(3):269-74. PubMed ID: 9563821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment.
    Flaherty KM; Wilbanks SM; DeLuca-Flaherty C; McKay DB
    J Biol Chem; 1994 Apr; 269(17):12899-907. PubMed ID: 8175707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural dynamics of the DnaK-peptide complex.
    Popp S; Packschies L; Radzwill N; Vogel KP; Steinhoff HJ; Reinstein J
    J Mol Biol; 2005 Apr; 347(5):1039-52. PubMed ID: 15784262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of mutating arginine-469 on the substrate binding and refolding activities of 70-kDa heat shock cognate protein.
    Chang TC; Hsiao CD; Wu SJ; Wang C
    Arch Biochem Biophys; 2001 Feb; 386(1):30-6. PubMed ID: 11360998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70.
    Morshauser RC; Hu W; Wang H; Pang Y; Flynn GC; Zuiderweg ER
    J Mol Biol; 1999 Jun; 289(5):1387-403. PubMed ID: 10373374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein.
    Briknarová K; Takayama S; Brive L; Havert ML; Knee DA; Velasco J; Homma S; Cabezas E; Stuart J; Hoyt DW; Satterthwait AC; Llinás M; Reed JC; Ely KR
    Nat Struct Biol; 2001 Apr; 8(4):349-52. PubMed ID: 11276257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange.
    Sadis S; Hightower LE
    Biochemistry; 1992 Oct; 31(39):9406-12. PubMed ID: 1356434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis.
    Slepenkov SV; Witt SN
    Biochemistry; 1998 Jan; 37(4):1015-24. PubMed ID: 9454592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system.
    Pierpaoli EV; Sandmeier E; Baici A; Schönfeld HJ; Gisler S; Christen P
    J Mol Biol; 1997 Jun; 269(5):757-68. PubMed ID: 9223639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.
    Slepenkov SV; Patchen B; Peterson KM; Witt SN
    Biochemistry; 2003 May; 42(19):5867-76. PubMed ID: 12741845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aspartyl residue 10 is essential for ATPase activity of rat hsc70.
    Huang SP; Tsai MY; Tzou YM; Wu WG; Wang C
    J Biol Chem; 1993 Jan; 268(3):2063-8. PubMed ID: 8420978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two distinct domains in hsc70 are essential for the interaction with the synaptic vesicle cysteine string protein.
    Stahl B; Tobaben S; Südhof TC
    Eur J Cell Biol; 1999 Jun; 78(6):375-81. PubMed ID: 10430018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity.
    O'Brien MC; McKay DB
    J Biol Chem; 1995 Feb; 270(5):2247-50. PubMed ID: 7836457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BAG-1 modulates the chaperone activity of Hsp70/Hsc70.
    Takayama S; Bimston DN; Matsuzawa S; Freeman BC; Aime-Sempe C; Xie Z; Morimoto RI; Reed JC
    EMBO J; 1997 Aug; 16(16):4887-96. PubMed ID: 9305631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the peptide binding domain of hsc70. 18-Kilodalton fragment located immediately after ATPase domain is sufficient for high affinity binding.
    Wang TF; Chang JH; Wang C
    J Biol Chem; 1993 Dec; 268(35):26049-51. PubMed ID: 8253714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.
    Sriram M; Osipiuk J; Freeman B; Morimoto R; Joachimiak A
    Structure; 1997 Mar; 5(3):403-14. PubMed ID: 9083109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.