BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8605237)

  • 1. On the formation of the mixed pyrrole catalysed by porphobilinogen synthase from Rhodobacter spheroides.
    Lüönd RM; Neier R
    Biochim Biophys Acta; 1996 Feb; 1289(1):83-6. PubMed ID: 8605237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysine as the substrate binding site of porphobilinogen synthase of Rhodopseudomonas spheroides.
    Nandi DL
    Z Naturforsch C Biosci; 1978; 33(9-10):799-802. PubMed ID: 153667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Chlorolevulinate modification of porphobilinogen synthase identifies a potential role for the catalytic zinc.
    Jaffe EK; Abrams WR; Kaempfen HX; Harris KA
    Biochemistry; 1992 Feb; 31(7):2113-23. PubMed ID: 1346974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides.
    Jordan PM; Berry A
    Biochem J; 1981 Apr; 195(1):177-81. PubMed ID: 6975621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of bisubstrate inhibitors of porphobilinogen synthase from Pseudomonas aeruginosa.
    Gacond S; Frère F; Nentwich M; Faurite JP; Frankenberg-Dinkel N; Neier R
    Chem Biodivers; 2007 Feb; 4(2):189-202. PubMed ID: 17311232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrroles formed from porphobilinogen and amines by uroporphyrinogen synthetase of Rhodopseudomonas spheroides.
    Davies RC; Neuberger A
    Biochem J; 1973 Jul; 133(3):471-92. PubMed ID: 4542566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated assay for delta-aminolevulinic acid dehydratase.
    Gore MG; Jordan PM; Chaudhry AG
    Anal Biochem; 1978 Jun; 87(1):141-7. PubMed ID: 307928
    [No Abstract]   [Full Text] [Related]  

  • 8. 5-Chloro[1,4-13C]levulinic acid modification of mammalian and bacterial porphobilinogen synthase suggests an active site containing two Zn(II).
    Jaffe EK; Volin M; Myers CB; Abrams WR
    Biochemistry; 1994 Sep; 33(38):11554-62. PubMed ID: 7918369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production, purification, and characterization of a Mg2+-responsive porphobilinogen synthase from Pseudomonas aeruginosa.
    Frankenberg N; Heinz DW; Jahn D
    Biochemistry; 1999 Oct; 38(42):13968-75. PubMed ID: 10529243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 15N and 13C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate.
    Jaffe EK; Markham GD; Rajagopalan JS
    Biochemistry; 1990 Sep; 29(36):8345-50. PubMed ID: 2252894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of the pyrrole porphobilinogen by sepharose-linked -aminolevulinic acid dehydratase.
    Gurne D; Shemin D
    Science; 1973 Jun; 180(4091):1188-90. PubMed ID: 4707065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of porphobilinogen synthase from Pseudomonas aeruginosa in complex with 5-fluorolevulinic acid suggests a double Schiff base mechanism.
    Frère F; Schubert WD; Stauffer F; Frankenberg N; Neier R; Jahn D; Heinz DW
    J Mol Biol; 2002 Jul; 320(2):237-47. PubMed ID: 12079382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 13C NMR as a probe for the study of enzyme-catalysed reactions: mechanism of action of 5-aminolevulinic acid dehydratase.
    Jordan PM; Seehra JS
    FEBS Lett; 1980 Jun; 114(2):283-6. PubMed ID: 6967019
    [No Abstract]   [Full Text] [Related]  

  • 14. Accumulation of porphobilinogen and other pyrroles by mutant and wild type Rhodopseudomonas spheroides: regulation by heme.
    Hatch T; Lascelles J
    Arch Biochem Biophys; 1972 May; 150(1):147-53. PubMed ID: 4537309
    [No Abstract]   [Full Text] [Related]  

  • 15. Control of enzyme synthesis during adaptation in synchronously dividing populations of Rhodopseudomonas spheroides.
    Ferretti JJ; Gray ED
    Biochem Biophys Res Commun; 1967 Nov; 29(4):501-7. PubMed ID: 16496526
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanistic implications of mutations to the active site lysine of porphobilinogen synthase.
    Mitchell LW; Volin M; Martins J; Jaffe EK
    J Biol Chem; 2001 Jan; 276(2):1538-44. PubMed ID: 11032841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthesis of porphobilinogen by immobilized delta-aminolevulinic acid dehydratase.
    Gurne D; Shemin D
    Methods Enzymol; 1976; 44():844-9. PubMed ID: 1088174
    [No Abstract]   [Full Text] [Related]  

  • 18. Computational insights into the mechanism of porphobilinogen synthase.
    Erdtman E; Bushnell EA; Gauld JW; Eriksson LA
    J Phys Chem B; 2010 Dec; 114(50):16860-70. PubMed ID: 21090799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of porphobilinogen synthase: the chemical step revisited by QM/MM calculations.
    Tian BX; Erdtman E; Eriksson LA
    J Phys Chem B; 2012 Oct; 116(40):12105-12. PubMed ID: 22974111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer.
    Bollivar DW; Clauson C; Lighthall R; Forbes S; Kokona B; Fairman R; Kundrat L; Jaffe EK
    BMC Biochem; 2004 Nov; 5():17. PubMed ID: 15555082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.