BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8605802)

  • 1. Regional tracheal blood flow during conventional and high-frequency jet ventilation in suckling pigs.
    Cavanagh KA; Hill HF; Wojciechowski WV; Parker JC
    Crit Care Med; 1996 Feb; 24(2):280-6. PubMed ID: 8605802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracheal damage following conventional and high-frequency ventilation at low and high humidity.
    Todd DA; John E; Osborn RA
    Crit Care Med; 1991 Oct; 19(10):1310-6. PubMed ID: 1914489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in feline tracheal permeability after mechanical ventilation.
    Maynard RC; Wangensteen OD; Connett JE; Holloman KK; Boros SJ; Mammel MC
    Crit Care Med; 1993 Jan; 21(1):90-7. PubMed ID: 8420738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracheal blood flow during spontaneous and mechanical ventilation of dry gases in sheep.
    White DA; Parsons GH
    J Appl Physiol (1985); 1990 Sep; 69(3):1117-22. PubMed ID: 2147178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of conventional mechanical ventilation and jet ventilation on airway pressure in dogs and plastic models with tracheal stenosis.
    Shinozaki M; Sueyoshi A; Morinaga T; Tsuda H; Muteki T
    Crit Care Med; 1996 Apr; 24(4):658-62. PubMed ID: 8612419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal and tracheal airway pressures during different modes of mechanical ventilation: an animal model study.
    Zobel G; Dacar D; Rödl S
    Pediatr Pulmonol; 1994 Oct; 18(4):239-43. PubMed ID: 7838623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome.
    Smith KM; Mrozek JD; Simonton SC; Bing DR; Meyers PA; Connett JE; Mammel MC
    Crit Care Med; 1997 Nov; 25(11):1888-97. PubMed ID: 9366775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of changes in respiratory mechanics during partial liquid ventilation using jet pulses.
    Schmalisch G; Schmidt M; Proquitté H; Foitzik B; Rüdiger M; Wauer RR
    Crit Care Med; 2003 May; 31(5):1435-41. PubMed ID: 12771615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracheal gas insufflation as a lung-protective strategy: physiologic, histologic, and biochemical markers.
    Oliver RE; Rozycki HJ; Greenspan JS; Wolfson MR; Shaffer TH
    Pediatr Crit Care Med; 2005 Jan; 6(1):64-9. PubMed ID: 15636662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of airway pathologic lesions after high-frequency jet or conventional ventilation.
    Polak MJ; Donnelly WH; Bucciarelli RL
    Am J Dis Child; 1989 Feb; 143(2):228-32. PubMed ID: 2916497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracheobronchial and pulmonary histopathology following conventional and high-frequency jet ventilation.
    Naglie RA; Donn SM; Nicks JJ; Bandy KP; Gray JM
    J Perinatol; 1990 Mar; 10(1):46-51. PubMed ID: 2179488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency ventilation and tracheal injuries.
    Mammel MC; Ophoven JP; Lewallen PK; Gordon MJ; Sutton MC; Boros SJ
    Pediatrics; 1986 Apr; 77(4):608-13. PubMed ID: 3515307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of wall shear and mass transfer in a large scale model of neonatal high-frequency jet ventilation.
    Muller WJ; Gerjarusek S; Scherer PW
    Ann Biomed Eng; 1990; 18(1):69-88. PubMed ID: 2306032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute airway injury during high-frequency jet ventilation and high-frequency oscillatory ventilation.
    Mammel MC; Ophoven JP; Lewallen PK; Gordon MJ; Boros SJ
    Crit Care Med; 1991 Mar; 19(3):394-8. PubMed ID: 1999102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic effects of different modes of mechanical ventilation in acute cardiac and pulmonary failure: an experimental study.
    Zobel G; Dacar D; Rödl S
    Crit Care Med; 1994 Oct; 22(10):1624-30. PubMed ID: 7924375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effective tracheal diameter that causes air trapping during jet ventilation.
    Dworkin R; Benumof JL; Benumof R; Karagianes TG
    J Cardiothorac Anesth; 1990 Dec; 4(6):731-6. PubMed ID: 2131903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different humidification systems for high-frequency jet ventilation.
    Doyle HJ; Napolitano AE; Lippman HR; Cooper KR; Duncan JS; Eakins K; Glauser FL
    Crit Care Med; 1984 Sep; 12(9):815-9. PubMed ID: 6590205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of tracheal epithelium following high frequency ventilation at low inspired humidity.
    Todd DA; John E; Osborn R
    Early Hum Dev; 1992 Nov; 31(1):53-66. PubMed ID: 1486818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bronchoscopic findings in infants treated with high-frequency jet ventilation versus conventional ventilation.
    Kercsmar CM; Martin RJ; Chatburn RL; Carlo WA
    Pediatrics; 1988 Dec; 82(6):884-7. PubMed ID: 3186379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulmonary hemodynamic consequences of ECG-synchronized ventilation.
    Purut CM; Utsunomiya H; Craig DM; Smith PK
    J Surg Res; 1993 Aug; 55(2):162-7. PubMed ID: 8412095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.