BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 8605882)

  • 1. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA.
    Caffarelli E; Fatica A; Prislei S; De Gregorio E; Fragapane P; Bozzoni I
    EMBO J; 1996 Mar; 15(5):1121-31. PubMed ID: 8605882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of U16 snoRNA in early development of X. laevis.
    Fatica A; Caffarelli E; Beccari E; Bozzoni I
    Biochem Biophys Res Commun; 1997 Dec; 241(2):486-90. PubMed ID: 9425297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs.
    Nicoloso M; Qu LH; Michot B; Bachellerie JP
    J Mol Biol; 1996 Jul; 260(2):178-95. PubMed ID: 8764399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOP promoter elements control the relative ratio of intron-encoded snoRNA versus spliced mRNA biosynthesis.
    de Turris V; Di Leva G; Caldarola S; Loreni F; Amaldi F; Bozzoni I
    J Mol Biol; 2004 Nov; 344(2):383-94. PubMed ID: 15522292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel Mn++-dependent ribonuclease that functions in U16 SnoRNA processing in X. laevis.
    Caffarelli E; Maggi L; Fatica A; Jiricny J; Bozzoni I
    Biochem Biophys Res Commun; 1997 Apr; 233(2):514-7. PubMed ID: 9144568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis.
    Caffarelli E; Arese M; Santoro B; Fragapane P; Bozzoni I
    Mol Cell Biol; 1994 May; 14(5):2966-74. PubMed ID: 7513048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes.
    Borovjagin AV; Gerbi SA
    J Mol Biol; 1999 Mar; 286(5):1347-63. PubMed ID: 10064702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. U14 snoRNAs are encoded in introns of human ribosomal protein S13 gene.
    Kenmochi N; Higa S; Yoshihama M; Tanaka T
    Biochem Biophys Res Commun; 1996 Nov; 228(2):371-4. PubMed ID: 8920921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D.
    Watkins NJ; Leverette RD; Xia L; Andrews MT; Maxwell ES
    RNA; 1996 Feb; 2(2):118-33. PubMed ID: 8601279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two different snoRNAs are encoded in introns of amphibian and human L1 ribosomal protein genes.
    Prislei S; Michienzi A; Presutti C; Fragapane P; Bozzoni I
    Nucleic Acids Res; 1993 Dec; 21(25):5824-30. PubMed ID: 7507233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative structure analysis of vertebrate U17 small nucleolar RNA (snoRNA).
    Cervelli M; Cecconi F; Giorgi M; Annesi F; Oliverio M; Mariottini P
    J Mol Evol; 2002 Feb; 54(2):166-79. PubMed ID: 11821910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of specific nucleotide sequences and structural elements required for intronic U14 snoRNA processing.
    Xia L; Watkins NJ; Maxwell ES
    RNA; 1997 Jan; 3(1):17-26. PubMed ID: 8990395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coiled bodies are predisposed to a spatial association with genes that contain snoRNA sequences in their introns.
    Schul W; Adelaar B; van Driel R; de Jong L
    J Cell Biochem; 1999 Dec; 75(3):393-403. PubMed ID: 10536363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different forms of U15 snoRNA are encoded in the introns of the ribosomal protein S1 gene of Xenopus laevis.
    Pellizzoni L; Crosio C; Campioni N; Loreni F; Pierandrei-Amaldi P
    Nucleic Acids Res; 1994 Nov; 22(22):4607-13. PubMed ID: 7984408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner.
    Richard P; Kiss AM; Darzacq X; Kiss T
    Mol Cell Biol; 2006 Apr; 26(7):2540-9. PubMed ID: 16537900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p62, a novel Xenopus laevis component of box C/D snoRNPs.
    Filippini D; Bozzoni I; Caffarelli E
    RNA; 2000 Mar; 6(3):391-401. PubMed ID: 10744023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spacing between functional Cis-elements of U3 snoRNA is critical for rRNA processing.
    Borovjagin AV; Gerbi SA
    J Mol Biol; 2000 Jun; 300(1):57-74. PubMed ID: 10864498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA.
    Vincenti S; De Chiara V; Bozzoni I; Presutti C
    RNA; 2007 Jan; 13(1):138-50. PubMed ID: 17135484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism.
    Chanfreau G; Legrain P; Jacquier A
    J Mol Biol; 1998 Dec; 284(4):975-88. PubMed ID: 9837720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA.
    Fragapane P; Prislei S; Michienzi A; Caffarelli E; Bozzoni I
    EMBO J; 1993 Jul; 12(7):2921-8. PubMed ID: 8335006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.