BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 8605882)

  • 41. Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities.
    Villa T; Ceradini F; Presutti C; Bozzoni I
    Mol Cell Biol; 1998 Jun; 18(6):3376-83. PubMed ID: 9584178
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localization and processing from a polycistronic precursor of novel snoRNAs in maize.
    Shaw PJ; Beven AF; Leader DJ; Brown JW
    J Cell Sci; 1998 Aug; 111 ( Pt 15)():2121-8. PubMed ID: 9664033
    [TBL] [Abstract][Full Text] [Related]  

  • 43. U21, a novel small nucleolar RNA with a 13 nt. complementarity to 28S rRNA, is encoded in an intron of ribosomal protein L5 gene in chicken and mammals.
    Qu LH; Nicoloso M; Michot B; Azum MC; Caizergues-Ferrer M; Renalier MH; Bachellerie JP
    Nucleic Acids Res; 1994 Oct; 22(20):4073-81. PubMed ID: 7937132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5',3'-terminal stem structure.
    Darzacq X; Kiss T
    Mol Cell Biol; 2000 Jul; 20(13):4522-31. PubMed ID: 10848579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. snoRNA nuclear import and potential for cotranscriptional function in pre-rRNA processing.
    Peculis BA
    RNA; 2001 Feb; 7(2):207-19. PubMed ID: 11233978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three small nucleolar RNAs that are involved in ribosomal RNA precursor processing.
    Mishra RK; Eliceiri GL
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4972-7. PubMed ID: 9144174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intronic U14 snoRNAs of Xenopus laevis are located in two different parent genes and can be processed from their introns during early oogenesis.
    Xia L; Liu J; Sage C; Trexler EB; Andrews MT; Maxwell ES
    Nucleic Acids Res; 1995 Dec; 23(23):4844-9. PubMed ID: 8532527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fibrillarin binds directly and specifically to U16 box C/D snoRNA.
    Fatica A; Galardi S; Altieri F; Bozzoni I
    RNA; 2000 Jan; 6(1):88-95. PubMed ID: 10668801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The small nucleolar RNAs.
    Maxwell ES; Fournier MJ
    Annu Rev Biochem; 1995; 64():897-934. PubMed ID: 7574504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Self-cleaving motifs are found in close proximity to the sites utilized for U16 snoRNA processing.
    Prislei S; Fatica A; De Gregorio E; Arese M; Fragapane P; Caffarelli E; Presutti C; Bozzoni I
    Gene; 1995 Oct; 163(2):221-6. PubMed ID: 7590270
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Small nucleolar RNA.
    Gerbi SA
    Biochem Cell Biol; 1995; 73(11-12):845-58. PubMed ID: 8722000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs.
    Tycowski KT; Steitz JA
    Eur J Cell Biol; 2001 Feb; 80(2):119-25. PubMed ID: 11302516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast.
    Qu LH; Henras A; Lu YJ; Zhou H; Zhou WX; Zhu YQ; Zhao J; Henry Y; Caizergues-Ferrer M; Bachellerie JP
    Mol Cell Biol; 1999 Feb; 19(2):1144-58. PubMed ID: 9891049
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Processing of vertebrate box C/D small nucleolar RNAs in plant cells.
    Leader DJ; Clark GP; Boag J; Watters JA; Simpson CG; Watkins NJ; Maxwell ES; Brown JW
    Eur J Biochem; 1998 Apr; 253(1):154-60. PubMed ID: 9578473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation.
    Ganot P; Caizergues-Ferrer M; Kiss T
    Genes Dev; 1997 Apr; 11(7):941-56. PubMed ID: 9106664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease.
    Giorgi C; Fatica A; Nagel R; Bozzoni I
    EMBO J; 2001 Dec; 20(23):6856-65. PubMed ID: 11726521
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Splicing-independent processing of plant box C/D and box H/ACA small nucleolar RNAs.
    Leader DJ; Clark GP; Watters J; Beven AF; Shaw PJ; Brown JW
    Plant Mol Biol; 1999 Apr; 39(6):1091-100. PubMed ID: 10380797
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli.
    Narayanan A; Speckmann W; Terns R; Terns MP
    Mol Biol Cell; 1999 Jul; 10(7):2131-47. PubMed ID: 10397754
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae.
    Villa T; Ceradini F; Bozzoni I
    Mol Cell Biol; 2000 Feb; 20(4):1311-20. PubMed ID: 10648617
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deletion of Swm2p selectively impairs trimethylation of snRNAs by trimethylguanosine synthase (Tgs1p).
    Boon KL; Kos M
    FEBS Lett; 2010 Aug; 584(15):3299-304. PubMed ID: 20621096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.