BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8605895)

  • 1. Multiple, coordinated Ca2+ -release events underlie the inositol trisphosphate-induced local Ca2+ spikes in mouse pancreatic acinar cells.
    Thorn P; Moreton R; Berridge M
    EMBO J; 1996 Mar; 15(5):999-1003. PubMed ID: 8605895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local calcium spiking in pancreatic acinar cells.
    Petersen OH
    Ciba Found Symp; 1995; 188():85-94; discussion 94-103. PubMed ID: 7587625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells.
    Cancela JM; Churchill GC; Galione A
    Nature; 1999 Mar; 398(6722):74-6. PubMed ID: 10078532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of Ca2+ release from intracellular stores in permeabilized rat parotid acinar cells using the fluorescent indicators Mag-fura-2 and calcium green C18.
    Tojyo Y; Tanimura A; Matsumoto Y
    Biochem Biophys Res Commun; 1997 Nov; 240(1):189-95. PubMed ID: 9367908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate.
    Parker I; Yao Y
    Proc Biol Sci; 1991 Dec; 246(1317):269-74. PubMed ID: 1686093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bombesin-induced cytosolic Ca2+ spiking in pancreatic acinar cells depends on cyclic ADP-ribose and ryanodine receptors.
    Burdakov D; Cancela JM; Petersen OH
    Cell Calcium; 2001 Mar; 29(3):211-6. PubMed ID: 11162858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of ryanodine-operated channels in tert-butylhydroperoxide-evoked Ca2+ mobilisation in pancreatic acinar cells.
    Martínez-Burgos MA; Granados MP; González A; Rosado JA; Yago MD; Salido GM; Martínez-Victoria E; Mañas M; Pariente JA
    J Exp Biol; 2006 Jun; 209(Pt 11):2156-64. PubMed ID: 16709917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying InsP3-evoked global Ca2+ signals in mouse pancreatic acinar cells.
    Fogarty KE; Kidd JF; Tuft DA; Thorn P
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):515-26. PubMed ID: 10922004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of calcium signals by intracellular pH in isolated rat pancreatic acinar cells.
    Speake T; Elliott AC
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):415-30. PubMed ID: 9490869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial characterisation of ryanodine-induced calcium release in mouse pancreatic acinar cells.
    Ashby MC; Petersen OH; Tepikin AV
    Biochem J; 2003 Feb; 369(Pt 3):441-5. PubMed ID: 12444927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory and spatial aspects of inositol trisphosphate-mediated calcium signals.
    Horne JH
    Cell Biochem Biophys; 1999; 30(2):267-86. PubMed ID: 10356645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Ca2+ feedback in shaping InsP3-evoked Ca2+ signals in mouse pancreatic acinar cells.
    Kidd JF; Fogarty KE; Tuft RA; Thorn P
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):187-201. PubMed ID: 10517811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals.
    Tinel H; Cancela JM; Mogami H; Gerasimenko JV; Gerasimenko OV; Tepikin AV; Petersen OH
    EMBO J; 1999 Sep; 18(18):4999-5008. PubMed ID: 10487752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal aspects of cellular calcium signaling.
    Thomas AP; Bird GS; Hajnóczky G; Robb-Gaspers LD; Putney JW
    FASEB J; 1996 Nov; 10(13):1505-17. PubMed ID: 8940296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ signaling in the pancreatic acinus.
    Kanno T
    Pancreas; 1998 Apr; 16(3):273-6. PubMed ID: 9548666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inositol triphosphate produces different patterns of cytoplasmic Ca2+ spiking depending on its concentration.
    Petersen CC; Toescu EC; Potter BV; Petersen OH
    FEBS Lett; 1991 Nov; 293(1-2):179-82. PubMed ID: 1959657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid activation and partial inactivation of inositol trisphosphate receptors by inositol trisphosphate.
    Marchant JS; Taylor CW
    Biochemistry; 1998 Aug; 37(33):11524-33. PubMed ID: 9708988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characteristics of inositoltrisphosphate-sensitive Ca2+ stores in the acinar cells of rat submandibular salivary gland].
    Kopach OV; Kruhlykov IA; Kostiuk PH; Voĭtenko NV; Fedirko NV
    Fiziol Zh (1994); 2006; 52(1):30-40. PubMed ID: 16553296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IP(3)and cyclic ADP-ribose induced Ca(2+) release from intracellular stores of pancreatic acinar cells from rat in primary culture.
    Göbel A; Krause E; Feick P; Schulz I
    Cell Calcium; 2001 Jan; 29(1):29-37. PubMed ID: 11133353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ release dynamics in parotid and pancreatic exocrine acinar cells evoked by spatially limited flash photolysis.
    Won JH; Cottrell WJ; Foster TH; Yule DI
    Am J Physiol Gastrointest Liver Physiol; 2007 Dec; 293(6):G1166-77. PubMed ID: 17901163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.