These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 8605918)
1. Nitric oxide-mediated suppression of T cell responses during Trypanosoma brucei infection: soluble trypanosome products and interferon-gamma are synergistic inducers of nitric oxide synthase. Sternberg MJ; Mabbott NA Eur J Immunol; 1996 Mar; 26(3):539-43. PubMed ID: 8605918 [TBL] [Abstract][Full Text] [Related]
2. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. Schleifer KW; Mansfield JM J Immunol; 1993 Nov; 151(10):5492-503. PubMed ID: 8228241 [TBL] [Abstract][Full Text] [Related]
3. Trypanosoma cruzi: Tc52 released protein-induced increased expression of nitric oxide synthase and nitric oxide production by macrophages. Fernandez-Gomez R; Esteban S; Gomez-Corvera R; Zoulika K; Ouaissi A J Immunol; 1998 Apr; 160(7):3471-9. PubMed ID: 9531308 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection. Sternberg J; McGuigan F Eur J Immunol; 1992 Oct; 22(10):2741-4. PubMed ID: 1396977 [TBL] [Abstract][Full Text] [Related]
5. IFN-gamma-dependent nitric oxide production is not linked to resistance in experimental African trypanosomiasis. Hertz CJ; Mansfield JM Cell Immunol; 1999 Feb; 192(1):24-32. PubMed ID: 10066343 [TBL] [Abstract][Full Text] [Related]
6. [Defense mechanisms in trypanosomiasis]. Daulouede PS; Okomo-Assoumou MC; Labassa M; Fouquet C; Vincendeau P Bull Soc Pathol Exot; 1994; 87(5):330-2. PubMed ID: 7496195 [TBL] [Abstract][Full Text] [Related]
7. Identification of a parasitic immunomodulatory protein triggering the development of suppressive M1 macrophages during African trypanosomiasis. Gómez-Rodríguez J; Stijlemans B; De Muylder G; Korf H; Brys L; Berberof M; Darji A; Pays E; De Baetselier P; Beschin A J Infect Dis; 2009 Dec; 200(12):1849-60. PubMed ID: 19911988 [TBL] [Abstract][Full Text] [Related]
8. Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection. Abrahamsohn IA; Coffman RL J Immunol; 1995 Oct; 155(8):3955-63. PubMed ID: 7561103 [TBL] [Abstract][Full Text] [Related]
9. Bidirectional activating signals between Trypanosoma brucei and CD8+ T cells: a trypanosome-released factor triggers interferon-gamma production that stimulates parasite growth. Olsson T; Bakhiet M; Edlund C; Höjeberg B; Van der Meide PH; Kristensson K Eur J Immunol; 1991 Oct; 21(10):2447-54. PubMed ID: 1915554 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. Albina JE; Abate JA; Henry WL J Immunol; 1991 Jul; 147(1):144-8. PubMed ID: 1904899 [TBL] [Abstract][Full Text] [Related]
11. Synergism between tumor necrosis factor-alpha and interferon-gamma on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Muñoz-Fernández MA; Fernández MA; Fresno M Eur J Immunol; 1992 Feb; 22(2):301-7. PubMed ID: 1537373 [TBL] [Abstract][Full Text] [Related]
12. Experimental murine Trypanosoma congolense infections. I. Administration of anti-IFN-gamma antibodies alters trypanosome-susceptible mice to a resistant-like phenotype. Uzonna JE; Kaushik RS; Gordon JR; Tabel H J Immunol; 1998 Nov; 161(10):5507-15. PubMed ID: 9820527 [TBL] [Abstract][Full Text] [Related]
13. Resistance to the African trypanosomes is IFN-gamma dependent. Hertz CJ; Filutowicz H; Mansfield JM J Immunol; 1998 Dec; 161(12):6775-83. PubMed ID: 9862708 [TBL] [Abstract][Full Text] [Related]
14. [TH1 response in the experimental infection with Trypanosoma cruzi]. Cardoni RL; Antúnez MI; Abrami AA Medicina (B Aires); 1999; 59 Suppl 2():84-90. PubMed ID: 10668248 [TBL] [Abstract][Full Text] [Related]
15. Murine T lymphocyte specificity for African trypanosomes. II. Suppression of the T lymphocyte proliferative response to Trypanosoma brucei by systemic trypanosome infection. Gasbarre LC; Hug K; Louis J Clin Exp Immunol; 1981 Jul; 45(1):165-72. PubMed ID: 6458434 [TBL] [Abstract][Full Text] [Related]
16. Induction of nitric oxide synthase in mouse dendritic cells by IFN-gamma, endotoxin, and interaction with allogeneic T cells: nitric oxide production is associated with dendritic cell apoptosis. Lu L; Bonham CA; Chambers FG; Watkins SC; Hoffman RA; Simmons RL; Thomson AW J Immunol; 1996 Oct; 157(8):3577-86. PubMed ID: 8871658 [TBL] [Abstract][Full Text] [Related]
17. The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. Magez S; Stijlemans B; Radwanska M; Pays E; Ferguson MA; De Baetselier P J Immunol; 1998 Feb; 160(4):1949-56. PubMed ID: 9469458 [TBL] [Abstract][Full Text] [Related]
18. Suppressor macrophages in Trypanosoma brucei infection: nitric oxide is related to both suppressive activity and lifespan in vivo. Mabbott NA; Sutherland IA; Sternberg JM Parasite Immunol; 1995 Mar; 17(3):143-50. PubMed ID: 7792098 [TBL] [Abstract][Full Text] [Related]
19. Cytokine regulation of nitric oxide synthase in mouse retinal pigment epithelial cells in culture. Sparrow JR; Nathan C; Vodovotz Y Exp Eye Res; 1994 Aug; 59(2):129-39. PubMed ID: 7530664 [TBL] [Abstract][Full Text] [Related]
20. Trypanosoma brucei infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms. Beschin A; Brys L; Magez S; Radwanska M; De Baetselier P J Leukoc Biol; 1998 Apr; 63(4):429-39. PubMed ID: 9544572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]