BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 8605995)

  • 1. T7 DNA-dependent RNA polymerase can transcribe RNA from tick-borne encephalitis virus (TBEV) cDNA with SP6 promoter.
    Dobrikova EY; Pletnev AG; Karamyshev VN; Morozova OV
    FEBS Lett; 1996 Mar; 382(3):327-9. PubMed ID: 8605995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription by SP6 RNA polymerase exhibits an ATP dependence that is influenced by promoter topology.
    Taylor DR; Mathews MB
    Nucleic Acids Res; 1993 Apr; 21(8):1927-33. PubMed ID: 8493106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage SP6-specific RNA polymerase. II. Mapping of SP6 DNA and selective in vitro transcription.
    Kassavetis GA; Butler ET; Roulland D; Chamberlin MJ
    J Biol Chem; 1982 May; 257(10):5779-88. PubMed ID: 6279614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates.
    Stump WT; Hall KB
    Nucleic Acids Res; 1993 Nov; 21(23):5480-4. PubMed ID: 7505427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence and expression of the cloned gene of bacteriophage SP6 RNA polymerase.
    Kotani H; Ishizaki Y; Hiraoka N; Obayashi A
    Nucleic Acids Res; 1987 Mar; 15(6):2653-64. PubMed ID: 3031606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect on DNA transcription of nucleotide sequences upstream to T7 promoter.
    Baklanov MM; Golikova LN; Malygin EG
    Nucleic Acids Res; 1996 Sep; 24(18):3659-60. PubMed ID: 8836202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition and initiation site for four late promoters of phage T7 is a 22-base pair DNA sequence.
    Panayotatos N; Wells RD
    Nature; 1979 Jul; 280(5717):35-9. PubMed ID: 15305578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.
    Melton DA; Krieg PA; Rebagliati MR; Maniatis T; Zinn K; Green MR
    Nucleic Acids Res; 1984 Sep; 12(18):7035-56. PubMed ID: 6091052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses.
    Pletnev AG; Bray M; Huggins J; Lai CJ
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10532-6. PubMed ID: 1438242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete genomic sequence of the virulent Salmonella bacteriophage SP6.
    Dobbins AT; George M; Basham DA; Ford ME; Houtz JM; Pedulla ML; Lawrence JG; Hatfull GF; Hendrix RW
    J Bacteriol; 2004 Apr; 186(7):1933-44. PubMed ID: 15028677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of nucleotide replacement on the effectiveness and specificity of the SP6 promotor].
    Nazarenko IA; Gorn VV
    Mol Biol (Mosk); 1991; 25(6):1661-6. PubMed ID: 1813808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real time monitoring of the interaction of T7 RNA polymerase with azobenzene-tethered T7 promoter by biosensor.
    Liu M; Asanuma H; Komiyama M
    Nucleic Acids Symp Ser (Oxf); 2004; (48):221-2. PubMed ID: 17150558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage SP6-specific RNA polymerase. I. Isolation and characterization of the enzyme.
    Butler ET; Chamberlin MJ
    J Biol Chem; 1982 May; 257(10):5772-8. PubMed ID: 7040372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel DNA primase from the Salmonella typhimurium bacteriophage SP6.
    Tseng TY; Frick DN; Richardson CC
    Biochemistry; 2000 Feb; 39(7):1643-54. PubMed ID: 10677213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmids allowing transcription of cloned DNA by Salmonella typhimurium phage SP6 RNA polymerase to produce RNAs with authentic 5'-terminal sequences.
    Nam HG; Loechel S; Fried HM
    Gene; 1986; 46(1):57-64. PubMed ID: 3026927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All 4 bases of both strands at -9 and -8 in T7 promoter are needed to be substituted by SP6-specific bases to switch promoter specificity.
    Lee SS; Park SK; Cho IH; Kang C
    Biochem Mol Biol Int; 1993 Dec; 31(6):1017-21. PubMed ID: 8193585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme.
    Zhang X; Studier FW
    J Mol Biol; 1997 May; 269(1):10-27. PubMed ID: 9192997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-base-pair substitution in T7 promoter by SP6 promoter-specific base pairs alone abolishes T7 promoter activity but reveals SP6 promoter activity.
    Lee SS; Kang C
    Biochem Int; 1992 Feb; 26(1):1-5. PubMed ID: 1616486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T7 RNA polymerase bypass of large gaps on the template strand reveals a critical role of the nontemplate strand in elongation.
    Zhou W; Reines D; Doetsch PW
    Cell; 1995 Aug; 82(4):577-85. PubMed ID: 7664337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two base pairs at -9 and -8 distinguish between the bacteriophage T7 and SP6 promoters.
    Lee SS; Kang C
    J Biol Chem; 1993 Sep; 268(26):19299-304. PubMed ID: 8366080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.