These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 8606166)
1. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. Reisenauer A; Mohr CD; Shapiro L J Bacteriol; 1996 Apr; 178(7):1919-27. PubMed ID: 8606166 [TBL] [Abstract][Full Text] [Related]
2. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J; Newton A J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189 [TBL] [Abstract][Full Text] [Related]
3. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter. Wu J; Newton A J Bacteriol; 1997 Jan; 179(2):514-21. PubMed ID: 8990305 [TBL] [Abstract][Full Text] [Related]
4. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. Roberts RC; Toochinda C; Avedissian M; Baldini RL; Gomes SL; Shapiro L J Bacteriol; 1996 Apr; 178(7):1829-41. PubMed ID: 8606155 [TBL] [Abstract][Full Text] [Related]
5. An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. Schramm FD; Heinrich K; Thüring M; Bernhardt J; Jonas K PLoS Genet; 2017 Dec; 13(12):e1007148. PubMed ID: 29281627 [TBL] [Abstract][Full Text] [Related]
6. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Fischer B; Rummel G; Aldridge P; Jenal U Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783 [TBL] [Abstract][Full Text] [Related]
7. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus. da Silva AC; Simão RC; Susin MF; Baldini RL; Avedissian M; Gomes SL Mol Microbiol; 2003 Jul; 49(2):541-53. PubMed ID: 12828648 [TBL] [Abstract][Full Text] [Related]
8. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria. McCarty JS; Rüdiger S; Schönfeld HJ; Schneider-Mergener J; Nakahigashi K; Yura T; Bukau B J Mol Biol; 1996 Mar; 256(5):829-37. PubMed ID: 8601834 [TBL] [Abstract][Full Text] [Related]
9. The heat shock response of Escherichia coli. Arsène F; Tomoyasu T; Bukau B Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710 [TBL] [Abstract][Full Text] [Related]
11. The RpoH-mediated stress response in Neisseria gonorrhoeae is regulated at the level of activity. Laskos L; Ryan CS; Fyfe JA; Davies JK J Bacteriol; 2004 Dec; 186(24):8443-52. PubMed ID: 15576794 [TBL] [Abstract][Full Text] [Related]
12. DnaK chaperone-mediated control of activity of a sigma(32) homolog (RpoH) plays a major role in the heat shock response of Agrobacterium tumefaciens. Nakahigashi K; Yanagi H; Yura T J Bacteriol; 2001 Sep; 183(18):5302-10. PubMed ID: 11514513 [TBL] [Abstract][Full Text] [Related]
13. Transcription of rpoH, encoding the Escherichia coli heat-shock regulator sigma32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex. Kallipolitis BH; Valentin-Hansen P Mol Microbiol; 1998 Aug; 29(4):1091-9. PubMed ID: 9767576 [TBL] [Abstract][Full Text] [Related]
14. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. Zhou YN; Kusukawa N; Erickson JW; Gross CA; Yura T J Bacteriol; 1988 Aug; 170(8):3640-9. PubMed ID: 2900239 [TBL] [Abstract][Full Text] [Related]
16. Regulation of the Caulobacter crescentus dnaKJ operon. Avedissian M; Lessing D; Gober JW; Shapiro L; Gomes SL J Bacteriol; 1995 Jun; 177(12):3479-84. PubMed ID: 7768857 [TBL] [Abstract][Full Text] [Related]
17. Regulatory conservation and divergence of sigma32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. Nakahigashi K; Yanagi H; Yura T J Bacteriol; 1998 May; 180(9):2402-8. PubMed ID: 9573192 [TBL] [Abstract][Full Text] [Related]
18. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nakahigashi K; Yanagi H; Yura T Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460 [TBL] [Abstract][Full Text] [Related]