These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 8606196)
81. Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Barloy F; Lecadet MM; Delécluse A Gene; 1998 May; 211(2):293-9. PubMed ID: 9602158 [TBL] [Abstract][Full Text] [Related]
82. Cloning of two new cry genes from Bacillus thuringiensis subsp. wuhanensis strain. Kuo WS; Lin JH; Tzeng CC; Kao SS; Chak KF Curr Microbiol; 2000 Apr; 40(4):227-32. PubMed ID: 10688690 [TBL] [Abstract][Full Text] [Related]
83. Bacitracin increases size of parasporal crystals and spores in Bacillus thuringiensis. García-Patrone M Mol Cell Biochem; 1985 Oct; 68(2):131-7. PubMed ID: 4079914 [TBL] [Abstract][Full Text] [Related]
84. Domain organization of Bacillus thuringiensis CryIIIA delta-endotoxin studied by denaturation in guanidine hydrochloride solutions and limited proteolysis. Ort P; Zalunin IA; Gasparov VS; Chestukhina GG; Stepanov VM J Protein Chem; 1995 May; 14(4):241-9. PubMed ID: 7662112 [TBL] [Abstract][Full Text] [Related]
85. Expression of the Bacillus thuringiensis Chen H; Verplaetse E; Slamti L; Lereclus D Microbiol Spectr; 2022 Aug; 10(4):e0120522. PubMed ID: 35727045 [TBL] [Abstract][Full Text] [Related]
86. Activation of Bacillus thuringiensis Cry1I to a 50 kDa stable core impairs its full toxicity to Ostrinia nubilalis. Khorramnejad A; Bel Y; Talaei-Hassanloui R; Escriche B Appl Microbiol Biotechnol; 2022 Feb; 106(4):1745-1758. PubMed ID: 35138453 [TBL] [Abstract][Full Text] [Related]
87. Insecticidal Activity of Domínguez-Arrizabalaga M; Villanueva M; Escriche B; Ancín-Azpilicueta C; Caballero P Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32610662 [No Abstract] [Full Text] [Related]
88. The signal peptide of Cry1Ia can improve the expression of eGFP or mCherry in Escherichia coli and Bacillus thuringiensis and enhance the host's fluorescent intensity. Gao J; Qian H; Guo X; Mi Y; Guo J; Zhao J; Xu C; Zheng T; Duan M; Tang Z; Lin C; Shen Z; Jiang Y; Wang X Microb Cell Fact; 2020 May; 19(1):112. PubMed ID: 32448275 [TBL] [Abstract][Full Text] [Related]
89. Study of the Khorramnejad A; Domínguez-Arrizabalaga M; Caballero P; Escriche B; Bel Y Toxins (Basel); 2020 Feb; 12(2):. PubMed ID: 32098045 [No Abstract] [Full Text] [Related]
90. Suppressing a plant-parasitic nematode with fungivorous behavior by fungal transformation of a Bt cry gene. Cheng C; Qin J; Wu C; Lei M; Wang Y; Zhang L Microb Cell Fact; 2018 Jul; 17(1):116. PubMed ID: 30037328 [TBL] [Abstract][Full Text] [Related]
91. In Vivo Crystallization of Three-Domain Cry Toxins. Adalat R; Saleem F; Crickmore N; Naz S; Shakoori AR Toxins (Basel); 2017 Mar; 9(3):. PubMed ID: 28282927 [No Abstract] [Full Text] [Related]
92. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches. Argôlo-Filho RC; Loguercio LL Insects; 2013 Dec; 5(1):62-91. PubMed ID: 26462580 [TBL] [Abstract][Full Text] [Related]
93. Requirement of simultaneous assessment of crystal- and supernatant-related entomotoxic activities of Bacillus thuringiensis strains for biocontrol-product development. Argôlo-Filho RC; Costa RL; Pinheiro DH; Corrêa FM; Valicente FH; Pomella AW; Loguercio LL Toxins (Basel); 2014 May; 6(5):1598-614. PubMed ID: 24854738 [TBL] [Abstract][Full Text] [Related]
94. Germinant generation from δ-endotoxin of Bacillus thuringiensis strain 1.1. Papalazaridou A; Kanata E; Sivropoulou A Curr Microbiol; 2011 May; 62(5):1431-7. PubMed ID: 21286721 [TBL] [Abstract][Full Text] [Related]
95. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Ruiz de Escudero I; Estela A; Porcar M; Martínez C; Oguiza JA; Escriche B; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jul; 72(7):4796-804. PubMed ID: 16820473 [TBL] [Abstract][Full Text] [Related]
96. Detection and identification of cry1I genes in Bacillus thuringiensis using polymerase chain reaction and restriction fragment length polymorphism analysis. Sauka DH; Cozzi JG; Benintende GB Curr Microbiol; 2006 Jan; 52(1):60-3. PubMed ID: 16392002 [TBL] [Abstract][Full Text] [Related]
97. An extracytoplasmic-function sigma factor is involved in a pathway controlling beta-exotoxin I production in Bacillus thuringiensis subsp. thuringiensis strain 407-1. Espinasse S; Gohar M; Lereclus D; Sanchis V J Bacteriol; 2004 May; 186(10):3108-16. PubMed ID: 15126472 [TBL] [Abstract][Full Text] [Related]
98. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Song F; Zhang J; Gu A; Wu Y; Han L; He K; Chen Z; Yao J; Hu Y; Li G; Huang D Appl Environ Microbiol; 2003 Sep; 69(9):5207-11. PubMed ID: 12957903 [TBL] [Abstract][Full Text] [Related]
99. Correspondence of high levels of beta-exotoxin I and the presence of cry1B in Bacillus thuringiensis. Espinasse S; Gohar M; Chaufaux J; Buisson C; Perchat S; Sanchis V Appl Environ Microbiol; 2002 Sep; 68(9):4182-6. PubMed ID: 12200263 [TBL] [Abstract][Full Text] [Related]
100. Human cell exposure assays of Bacillus thuringiensis commercial insecticides: production of Bacillus cereus-like cytolytic effects from outgrowth of spores. Tayabali AF; Seligy VL Environ Health Perspect; 2000 Oct; 108(10):919-30. PubMed ID: 11049810 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]