These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8606528)

  • 1. Interactive control of renal function by alpha 2-adrenergic system and nitric oxide: role of angiotensin II.
    Vallon V; Peterson OW; Gabbai FB; Blantz RC; Thomson SC
    J Cardiovasc Pharmacol; 1995 Dec; 26(6):916-22. PubMed ID: 8606528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glomerular and tubular interactions between renal adrenergic activity and nitric oxide.
    Gabbai FB; Thomson SC; Peterson O; Wead L; Malvey K; Blantz RC
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1004-8. PubMed ID: 7611442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat.
    De Nicola L; Blantz RC; Gabbai FB
    J Clin Invest; 1992 Apr; 89(4):1248-56. PubMed ID: 1556186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between alpha 2-adrenergic and angiotensin II systems in the control of glomerular hemodynamics as assessed by renal micropuncture in the rat.
    Thomson SC; Gabbai FB; Tucker BJ; Blantz RC
    J Clin Invest; 1992 Aug; 90(2):604-11. PubMed ID: 1353766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha 2-adrenoceptors determine the response to nitric oxide inhibition in the rat glomerulus and proximal tubule.
    Thomson SC; Vallon V
    J Am Soc Nephrol; 1995 Nov; 6(5):1482-90. PubMed ID: 8589327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin.
    Steiner RW; Tucker BJ; Blantz RC
    J Clin Invest; 1979 Aug; 64(2):503-12. PubMed ID: 457865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of plasma renin activity and the renal nerves in the natriuresis of L-NMMA infusion in rats.
    Khraibi AA; Ramsey CR; Heublein DM; Berndt TJ; Knox FG
    Life Sci; 2001 Jul; 69(10):1123-31. PubMed ID: 11508345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II-induced renal responses in anesthetized rabbits: effects of N omega-nitro-L-arginine methyl ester and losartan.
    Adachi Y; Hashimoto K; Hisa H; Yoshida M; Suzuki-Kusaba M; Satoh S
    Eur J Pharmacol; 1996 Jul; 308(2):165-71. PubMed ID: 8840128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between nitric oxide and angiotensin II on antidiuresis and norepinephrine overflow induced by stimulation of renal nerves in anesthetized dogs.
    Egi Y; Matsumura Y; Miura A; Murata S; Morimoto S
    J Cardiovasc Pharmacol; 1995 Feb; 25(2):187-93. PubMed ID: 7752643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of reduction of nitric oxide on plasma and kidney tissue angiotensin II levels.
    Garcia GE; Brown MR; Wead LM; Braun S; Gabbai FB
    Am J Hypertens; 1997 Oct; 10(10 Pt 1):1103-8. PubMed ID: 9370380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin II and renal functional reserve in rats with Goldblatt hypertension.
    De Nicola L; Keiser JA; Blantz RC; Gabbai FB
    Hypertension; 1992 Jun; 19(6 Pt 2):790-4. PubMed ID: 1592482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute renal excretory actions of losartan in spontaneously hypertensive rats: role of AT2 receptors, prostaglandins, kinins and nitric oxide.
    Munoz-Garcia R; Maeso R; Rodrigo E; Navarro J; Ruilope LM; Casal MC; Cachofeiro V; Lahera V
    J Hypertens; 1995 Dec; 13(12 Pt 2):1779-84. PubMed ID: 8903651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelin and angiotensin mediate most glomerular responses to nitric oxide inhibition.
    Qiu C; Baylis C
    Kidney Int; 1999 Jun; 55(6):2390-6. PubMed ID: 10354287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen consumption in the kidney: effects of nitric oxide synthase isoforms and angiotensin II.
    Deng A; Miracle CM; Suarez JM; Lortie M; Satriano J; Thomson SC; Munger KA; Blantz RC
    Kidney Int; 2005 Aug; 68(2):723-30. PubMed ID: 16014049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nitric oxide and angiotensin II in the regulation of sympathetic nerve activity in spontaneously hypertensive rats.
    Kumagai H; Averill DB; Khosla MC; Ferrario CM
    Hypertension; 1993 Apr; 21(4):476-84. PubMed ID: 8384603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal functional reserve in the early stage of experimental diabetes.
    De Nicola L; Blantz RC; Gabbai FB
    Diabetes; 1992 Mar; 41(3):267-73. PubMed ID: 1551487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J
    Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback.
    Vallon V; Thomson S
    Am J Physiol; 1995 Dec; 269(6 Pt 2):F892-9. PubMed ID: 8594885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II blockade does not prevent renal effects of L-NAME in sodium-repleted humans.
    Montanari A; Tateo E; Fasoli E; Giberti D; Perinotto P; Novarini A; Dall'Aglio P
    Hypertension; 1997 Sep; 30(3 Pt 2):557-62. PubMed ID: 9322981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.