BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8606621)

  • 41. Protein kinase C-mediated acute tolerance to peripheral mu-opioid analgesia in the bradykinin-nociception test in mice.
    Inoue M; Ueda H
    J Pharmacol Exp Ther; 2000 May; 293(2):662-9. PubMed ID: 10773042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential association of spinal mu, delta and kappa opioid receptors with cutaneous thermal and visceral chemical nociceptive stimuli in the rat.
    Schmauss C; Yaksh TL; Shimohigashi Y; Harty G; Jensen T; Rodbard D
    Life Sci; 1983; 33 Suppl 1():653-6. PubMed ID: 6319919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Leukotriene B4 induced decrease in mechanical and thermal thresholds of C-fiber mechanonociceptors in rat hairy skin.
    Martin HA
    Brain Res; 1990 Feb; 509(2):273-9. PubMed ID: 2157521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of medetomidine, an alpha 2-adrenoceptor agonist, in various pain tests.
    Pertovaara A; Kauppila T; Tukeva T
    Eur J Pharmacol; 1990 Apr; 179(3):323-8. PubMed ID: 1973106
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of human placental extract on chemical and thermal nociception in mice.
    Gurgel LA; Santos FA; Rao VS
    Eur J Pain; 2000; 4(4):403-8. PubMed ID: 11124012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Systemic and spinal administration of the mu opioid, remifentanil, produces antinociception in amphibians.
    Mohan S; Stevens CW
    Eur J Pharmacol; 2006 Mar; 534(1-3):89-94. PubMed ID: 16487509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Responses of primary afferents and spinal dorsal horn neurons to thermal and mechanical stimuli before and during zymosan-induced inflammation of the rat hindpaw.
    Randich A; Meller ST; Gebhart GF
    Brain Res; 1997 Oct; 772(1-2):135-48. PubMed ID: 9406965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reduction in activity by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish.
    Lopez-Luna J; Al-Jubouri Q; Al-Nuaimy W; Sneddon LU
    J Exp Biol; 2017 Apr; 220(Pt 8):1451-1458. PubMed ID: 28424313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception.
    Ruiz-Medina J; Ledent C; Valverde O
    Neuropharmacology; 2011; 61(1-2):43-50. PubMed ID: 21352831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of chemical and low-intensity mechanical nociception by activation of histamine H3 receptors.
    Cannon KE; Hough LB
    J Pain; 2005 Mar; 6(3):193-200. PubMed ID: 15772913
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Divergent peripheral effects of pituitary adenylate cyclase-activating polypeptide-38 on nociception in rats and mice.
    Sándor K; Bölcskei K; McDougall JJ; Schuelert N; Reglodi D; Elekes K; Petho G; Pintér E; Szolcsányi J; Helyes Z
    Pain; 2009 Jan; 141(1-2):143-50. PubMed ID: 19091468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance.
    Shimoyama N; Shimoyama M; Davis AM; Monaghan DT; Inturrisi CE
    J Pharmacol Exp Ther; 2005 Feb; 312(2):834-40. PubMed ID: 15388787
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spinal antinociceptive action of three representative opioid peptides in frogs.
    Stevens CW; Pezalla PD; Yaksh TL
    Brain Res; 1987 Jan; 402(1):201-3. PubMed ID: 2881600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stress-induced analgesia in frogs: evidence for the involvement of an opioid system.
    Pezalla PD; Dicig M
    Brain Res; 1984 Apr; 296(2):356-60. PubMed ID: 6322930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mu opiate receptor gene dose effects on different morphine actions: evidence for differential in vivo mu receptor reserve.
    Sora I; Elmer G; Funada M; Pieper J; Li XF; Hall FS; Uhl GR
    Neuropsychopharmacology; 2001 Jul; 25(1):41-54. PubMed ID: 11377918
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involvement of GABAergic modulation of antinociception induced by morphine microinjected into the ventrolateral orbital cortex.
    Qu CL; Tang JS; Jia H
    Brain Res; 2006 Feb; 1073-1074():281-9. PubMed ID: 16448630
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spinal antinociceptive actions of mu- and kappa-opioids: the importance of stimulus intensity in determining 'selectivity' between reflexes to different modalities of noxious stimulus.
    Parsons CG; Headley PM
    Br J Pharmacol; 1989 Oct; 98(2):523-32. PubMed ID: 2555011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Putative nociceptor responses to mechanical and chemical stimulation in skeletal muscles of the chicken leg.
    Sandercock DA
    Brain Res Brain Res Rev; 2004 Oct; 46(2):155-62. PubMed ID: 15464204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intravenous morphine depresses the transmission of noxious messages to the nucleus centralis of the amygdala.
    Huang GF; Besson JM; Bernard JF
    Eur J Pharmacol; 1993 Jun; 236(3):449-56. PubMed ID: 8395385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new assay of thermal-based avoidance test in freely moving mice.
    Ding HK; Shum FW; Ko SW; Zhuo M
    J Pain; 2005 Jul; 6(7):411-6. PubMed ID: 15993818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.