These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 8606621)
41. Protein kinase C-mediated acute tolerance to peripheral mu-opioid analgesia in the bradykinin-nociception test in mice. Inoue M; Ueda H J Pharmacol Exp Ther; 2000 May; 293(2):662-9. PubMed ID: 10773042 [TBL] [Abstract][Full Text] [Related]
42. Differential association of spinal mu, delta and kappa opioid receptors with cutaneous thermal and visceral chemical nociceptive stimuli in the rat. Schmauss C; Yaksh TL; Shimohigashi Y; Harty G; Jensen T; Rodbard D Life Sci; 1983; 33 Suppl 1():653-6. PubMed ID: 6319919 [TBL] [Abstract][Full Text] [Related]
43. Leukotriene B4 induced decrease in mechanical and thermal thresholds of C-fiber mechanonociceptors in rat hairy skin. Martin HA Brain Res; 1990 Feb; 509(2):273-9. PubMed ID: 2157521 [TBL] [Abstract][Full Text] [Related]
44. The effect of medetomidine, an alpha 2-adrenoceptor agonist, in various pain tests. Pertovaara A; Kauppila T; Tukeva T Eur J Pharmacol; 1990 Apr; 179(3):323-8. PubMed ID: 1973106 [TBL] [Abstract][Full Text] [Related]
45. Effects of human placental extract on chemical and thermal nociception in mice. Gurgel LA; Santos FA; Rao VS Eur J Pain; 2000; 4(4):403-8. PubMed ID: 11124012 [TBL] [Abstract][Full Text] [Related]
46. Systemic and spinal administration of the mu opioid, remifentanil, produces antinociception in amphibians. Mohan S; Stevens CW Eur J Pharmacol; 2006 Mar; 534(1-3):89-94. PubMed ID: 16487509 [TBL] [Abstract][Full Text] [Related]
47. Responses of primary afferents and spinal dorsal horn neurons to thermal and mechanical stimuli before and during zymosan-induced inflammation of the rat hindpaw. Randich A; Meller ST; Gebhart GF Brain Res; 1997 Oct; 772(1-2):135-48. PubMed ID: 9406965 [TBL] [Abstract][Full Text] [Related]
48. Reduction in activity by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish. Lopez-Luna J; Al-Jubouri Q; Al-Nuaimy W; Sneddon LU J Exp Biol; 2017 Apr; 220(Pt 8):1451-1458. PubMed ID: 28424313 [TBL] [Abstract][Full Text] [Related]
49. GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception. Ruiz-Medina J; Ledent C; Valverde O Neuropharmacology; 2011; 61(1-2):43-50. PubMed ID: 21352831 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of chemical and low-intensity mechanical nociception by activation of histamine H3 receptors. Cannon KE; Hough LB J Pain; 2005 Mar; 6(3):193-200. PubMed ID: 15772913 [TBL] [Abstract][Full Text] [Related]
51. Divergent peripheral effects of pituitary adenylate cyclase-activating polypeptide-38 on nociception in rats and mice. Sándor K; Bölcskei K; McDougall JJ; Schuelert N; Reglodi D; Elekes K; Petho G; Pintér E; Szolcsányi J; Helyes Z Pain; 2009 Jan; 141(1-2):143-50. PubMed ID: 19091468 [TBL] [Abstract][Full Text] [Related]
52. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance. Shimoyama N; Shimoyama M; Davis AM; Monaghan DT; Inturrisi CE J Pharmacol Exp Ther; 2005 Feb; 312(2):834-40. PubMed ID: 15388787 [TBL] [Abstract][Full Text] [Related]
53. Spinal antinociceptive action of three representative opioid peptides in frogs. Stevens CW; Pezalla PD; Yaksh TL Brain Res; 1987 Jan; 402(1):201-3. PubMed ID: 2881600 [TBL] [Abstract][Full Text] [Related]
54. Stress-induced analgesia in frogs: evidence for the involvement of an opioid system. Pezalla PD; Dicig M Brain Res; 1984 Apr; 296(2):356-60. PubMed ID: 6322930 [TBL] [Abstract][Full Text] [Related]
55. Mu opiate receptor gene dose effects on different morphine actions: evidence for differential in vivo mu receptor reserve. Sora I; Elmer G; Funada M; Pieper J; Li XF; Hall FS; Uhl GR Neuropsychopharmacology; 2001 Jul; 25(1):41-54. PubMed ID: 11377918 [TBL] [Abstract][Full Text] [Related]
56. Involvement of GABAergic modulation of antinociception induced by morphine microinjected into the ventrolateral orbital cortex. Qu CL; Tang JS; Jia H Brain Res; 2006 Feb; 1073-1074():281-9. PubMed ID: 16448630 [TBL] [Abstract][Full Text] [Related]
57. Spinal antinociceptive actions of mu- and kappa-opioids: the importance of stimulus intensity in determining 'selectivity' between reflexes to different modalities of noxious stimulus. Parsons CG; Headley PM Br J Pharmacol; 1989 Oct; 98(2):523-32. PubMed ID: 2555011 [TBL] [Abstract][Full Text] [Related]
58. Putative nociceptor responses to mechanical and chemical stimulation in skeletal muscles of the chicken leg. Sandercock DA Brain Res Brain Res Rev; 2004 Oct; 46(2):155-62. PubMed ID: 15464204 [TBL] [Abstract][Full Text] [Related]
59. Intravenous morphine depresses the transmission of noxious messages to the nucleus centralis of the amygdala. Huang GF; Besson JM; Bernard JF Eur J Pharmacol; 1993 Jun; 236(3):449-56. PubMed ID: 8395385 [TBL] [Abstract][Full Text] [Related]
60. A new assay of thermal-based avoidance test in freely moving mice. Ding HK; Shum FW; Ko SW; Zhuo M J Pain; 2005 Jul; 6(7):411-6. PubMed ID: 15993818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]