BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8606701)

  • 1. Improvement of muscular oxidative capacity by training is associated with slight acidosis and ATP depletion in exercising muscles.
    Ravalec X; Le Tallec N; Carré F; de Certaines JD; Le Rumeur E
    Muscle Nerve; 1996 Mar; 19(3):355-61. PubMed ID: 8606701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of PCr to ATP and beta-ATP to beta-ADP phosphoryl conversion are modified in working rat skeletal muscle after training.
    Ravalec X; Le Tallec N; Carré F; de Certaines JD; Le Rumeur E
    MAGMA; 1999 Oct; 9(1-2):52-8. PubMed ID: 10555173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo.
    Jubrias SA; Crowther GJ; Shankland EG; Gronka RK; Conley KE
    J Physiol; 2003 Dec; 553(Pt 2):589-99. PubMed ID: 14514869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of specific skeletal muscle metabolic abnormalities to limitation of exercise capacity in patients with chronic heart failure: a phosphorus 31 nuclear magnetic resonance study.
    Chati Z; Zannad F; Robin-Lherbier B; Escanye JM; Jeandel C; Robert J; Aliot E
    Am Heart J; 1994 Oct; 128(4):781-92. PubMed ID: 7942449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise.
    Allen PS; Matheson GO; Zhu G; Gheorgiu D; Dunlop RS; Falconer T; Stanley C; Hochachka PW
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R999-1007. PubMed ID: 9321879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endurance-trained and untrained skeletal muscle bioenergetics observed with magnetic resonance spectroscopy.
    Guthrie BM; Frostick SP; Goodman J; Mikulis DJ; Plyley MJ; Marshall KW
    Can J Appl Physiol; 1996 Aug; 21(4):251-63. PubMed ID: 8853467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans.
    Layec G; Malucelli E; Le Fur Y; Manners D; Yashiro K; Testa C; Cozzone PJ; Iotti S; Bendahan D
    NMR Biomed; 2013 Nov; 26(11):1403-11. PubMed ID: 23703831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical training improves skeletal muscle metabolism in patients with chronic heart failure.
    Adamopoulos S; Coats AJ; Brunotte F; Arnolda L; Meyer T; Thompson CH; Dunn JF; Stratton J; Kemp GJ; Radda GK
    J Am Coll Cardiol; 1993 Apr; 21(5):1101-6. PubMed ID: 8459063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics studies of muscles of different types.
    Kushmerick MJ
    Basic Res Cardiol; 1987; 82 Suppl 2():17-30. PubMed ID: 3663016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of perfused pig intercostal muscles evaluated by 31P-magnetic resonance spectroscopy.
    Pedersen BL; Arendrup H; Secher NH; Quistorff B
    Exp Physiol; 2006 Jul; 91(4):755-63. PubMed ID: 16675500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of human muscle: exercise-induced ATP depletion.
    Taylor DJ; Styles P; Matthews PM; Arnold DA; Gadian DG; Bore P; Radda GK
    Magn Reson Med; 1986 Feb; 3(1):44-54. PubMed ID: 3959889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy.
    Kemp GJ; Sanderson AL; Thompson CH; Radda GK
    NMR Biomed; 1996 Sep; 9(6):261-70. PubMed ID: 9073304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in high-energy phosphates in rat skeletal muscle during acute respiratory acidosis.
    Thompson CH; Kemp GJ; Radda GK
    Acta Physiol Scand; 1992 Sep; 146(1):15-9. PubMed ID: 1442123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo evidence of abnormal mechanical and oxidative functions in the exercised muscle of dystrophic hamsters by 31P-NMR.
    Le Rumeur E; Le Tallec N; Lewa CJ; Ravalec X; de Certaines JD
    J Neurol Sci; 1995 Nov; 133(1-2):16-23. PubMed ID: 8583220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal in vivo skeletal muscle oxidative metabolism in sporadic inclusion body myositis assessed by 31P-magnetic resonance spectroscopy.
    Lodi R; Taylor DJ; Tabrizi SJ; Hilton-Jones D; Squier MV; Seller A; Styles P; Schapira AH
    Brain; 1998 Nov; 121 ( Pt 11)():2119-26. PubMed ID: 9827771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy metabolism in intensively exercising calf muscle under a simulated orthostasis.
    Zange J; Beisteiner M; Müller K; Shushakov V; Maassen N
    Pflugers Arch; 2008 Mar; 455(6):1153-63. PubMed ID: 17940794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of phosphoenergetic state and intracellular pH in human calf muscles after exercise by 31P NMR spectroscopy.
    Morikawa S; Inubushi T; Kito K; Tabata R
    Magn Reson Imaging; 1994; 12(7):1121-6. PubMed ID: 7997099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in potential controllers of human skeletal muscle respiration during incremental calf exercise.
    Barstow TJ; Buchthal SD; Zanconato S; Cooper DM
    J Appl Physiol (1985); 1994 Nov; 77(5):2169-76. PubMed ID: 7868430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.