These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 8606701)
1. Improvement of muscular oxidative capacity by training is associated with slight acidosis and ATP depletion in exercising muscles. Ravalec X; Le Tallec N; Carré F; de Certaines JD; Le Rumeur E Muscle Nerve; 1996 Mar; 19(3):355-61. PubMed ID: 8606701 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of PCr to ATP and beta-ATP to beta-ADP phosphoryl conversion are modified in working rat skeletal muscle after training. Ravalec X; Le Tallec N; Carré F; de Certaines JD; Le Rumeur E MAGMA; 1999 Oct; 9(1-2):52-8. PubMed ID: 10555173 [TBL] [Abstract][Full Text] [Related]
3. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. Jubrias SA; Crowther GJ; Shankland EG; Gronka RK; Conley KE J Physiol; 2003 Dec; 553(Pt 2):589-99. PubMed ID: 14514869 [TBL] [Abstract][Full Text] [Related]
4. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743 [TBL] [Abstract][Full Text] [Related]
5. Contribution of specific skeletal muscle metabolic abnormalities to limitation of exercise capacity in patients with chronic heart failure: a phosphorus 31 nuclear magnetic resonance study. Chati Z; Zannad F; Robin-Lherbier B; Escanye JM; Jeandel C; Robert J; Aliot E Am Heart J; 1994 Oct; 128(4):781-92. PubMed ID: 7942449 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise. Allen PS; Matheson GO; Zhu G; Gheorgiu D; Dunlop RS; Falconer T; Stanley C; Hochachka PW Am J Physiol; 1997 Sep; 273(3 Pt 2):R999-1007. PubMed ID: 9321879 [TBL] [Abstract][Full Text] [Related]
7. Endurance-trained and untrained skeletal muscle bioenergetics observed with magnetic resonance spectroscopy. Guthrie BM; Frostick SP; Goodman J; Mikulis DJ; Plyley MJ; Marshall KW Can J Appl Physiol; 1996 Aug; 21(4):251-63. PubMed ID: 8853467 [TBL] [Abstract][Full Text] [Related]
8. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. Layec G; Malucelli E; Le Fur Y; Manners D; Yashiro K; Testa C; Cozzone PJ; Iotti S; Bendahan D NMR Biomed; 2013 Nov; 26(11):1403-11. PubMed ID: 23703831 [TBL] [Abstract][Full Text] [Related]
9. Physical training improves skeletal muscle metabolism in patients with chronic heart failure. Adamopoulos S; Coats AJ; Brunotte F; Arnolda L; Meyer T; Thompson CH; Dunn JF; Stratton J; Kemp GJ; Radda GK J Am Coll Cardiol; 1993 Apr; 21(5):1101-6. PubMed ID: 8459063 [TBL] [Abstract][Full Text] [Related]
10. Energetics studies of muscles of different types. Kushmerick MJ Basic Res Cardiol; 1987; 82 Suppl 2():17-30. PubMed ID: 3663016 [TBL] [Abstract][Full Text] [Related]
12. Energetics of human muscle: exercise-induced ATP depletion. Taylor DJ; Styles P; Matthews PM; Arnold DA; Gadian DG; Bore P; Radda GK Magn Reson Med; 1986 Feb; 3(1):44-54. PubMed ID: 3959889 [TBL] [Abstract][Full Text] [Related]
13. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy. Kemp GJ; Sanderson AL; Thompson CH; Radda GK NMR Biomed; 1996 Sep; 9(6):261-70. PubMed ID: 9073304 [TBL] [Abstract][Full Text] [Related]
14. Changes in high-energy phosphates in rat skeletal muscle during acute respiratory acidosis. Thompson CH; Kemp GJ; Radda GK Acta Physiol Scand; 1992 Sep; 146(1):15-9. PubMed ID: 1442123 [TBL] [Abstract][Full Text] [Related]
15. In vivo evidence of abnormal mechanical and oxidative functions in the exercised muscle of dystrophic hamsters by 31P-NMR. Le Rumeur E; Le Tallec N; Lewa CJ; Ravalec X; de Certaines JD J Neurol Sci; 1995 Nov; 133(1-2):16-23. PubMed ID: 8583220 [TBL] [Abstract][Full Text] [Related]
16. Normal in vivo skeletal muscle oxidative metabolism in sporadic inclusion body myositis assessed by 31P-magnetic resonance spectroscopy. Lodi R; Taylor DJ; Tabrizi SJ; Hilton-Jones D; Squier MV; Seller A; Styles P; Schapira AH Brain; 1998 Nov; 121 ( Pt 11)():2119-26. PubMed ID: 9827771 [TBL] [Abstract][Full Text] [Related]
17. Energy metabolism in intensively exercising calf muscle under a simulated orthostasis. Zange J; Beisteiner M; Müller K; Shushakov V; Maassen N Pflugers Arch; 2008 Mar; 455(6):1153-63. PubMed ID: 17940794 [TBL] [Abstract][Full Text] [Related]
18. Imaging of phosphoenergetic state and intracellular pH in human calf muscles after exercise by 31P NMR spectroscopy. Morikawa S; Inubushi T; Kito K; Tabata R Magn Reson Imaging; 1994; 12(7):1121-6. PubMed ID: 7997099 [TBL] [Abstract][Full Text] [Related]
19. Changes in potential controllers of human skeletal muscle respiration during incremental calf exercise. Barstow TJ; Buchthal SD; Zanconato S; Cooper DM J Appl Physiol (1985); 1994 Nov; 77(5):2169-76. PubMed ID: 7868430 [TBL] [Abstract][Full Text] [Related]
20. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]