BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 8606794)

  • 1. Pharmacological characterization of presynaptic calcium channels using subsecond biochemical measurements of synaptosomal neurosecretion.
    Turner TJ; Dunlap K
    Neuropharmacology; 1995 Nov; 34(11):1469-78. PubMed ID: 8606794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices.
    Nooney JM; Lodge D
    Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission.
    Wright CE; Angus JA
    Br J Pharmacol; 1996 Sep; 119(1):49-56. PubMed ID: 8872356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of presynaptic calcium channels with omega-conotoxin MVIIC and omega-grammotoxin SIA: role for a resistant calcium channel type in neurosecretion.
    Turner TJ; Lampe RA; Dunlap K
    Mol Pharmacol; 1995 Feb; 47(2):348-53. PubMed ID: 7870043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum.
    Hill MP; Brotchie JM
    Br J Pharmacol; 1999 May; 127(1):275-83. PubMed ID: 10369483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals.
    Vázquez E; Sánchez-Prieto J
    Eur J Neurosci; 1997 Oct; 9(10):2009-18. PubMed ID: 9421162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple types of Ca2+ channels in mouse motor nerve terminals.
    Lin MJ; Lin-Shiau SY
    Eur J Neurosci; 1997 Apr; 9(4):817-23. PubMed ID: 9153589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic calcium channels and field-evoked transmitter exocytosis from cultured cerebellar granule cells.
    Cousin MA; Hurst H; Nicholls DG
    Neuroscience; 1997 Nov; 81(1):151-61. PubMed ID: 9300408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nonpeptide alpha-eudexp6l from Juniperus virginiana Linn. (Cupressaceae) inhibits omega-agatoxin IVA-sensitive Ca2+ currents and synaptosomal 45Ca2+ uptake.
    Asakura K; Kanemasa T; Minagawa K; Kagawa K; Ninomiya M
    Brain Res; 1999 Mar; 823(1-2):169-76. PubMed ID: 10095023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for Q type Ca2+ channels in neurotransmission in the rat urinary bladder.
    Frew R; Lundy PM
    Br J Pharmacol; 1995 Sep; 116(1):1595-8. PubMed ID: 8564224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological characterization of the voltage-dependent Ca2+ channels present in synaptosomes from rat and chicken central nervous system.
    Alvarez Maubecin V; Sanchez VN; Rosato Siri MD; Cherksey BD; Sugimori M; Llinás R; Uchitel OD
    J Neurochem; 1995 Jun; 64(6):2544-51. PubMed ID: 7760034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation.
    Huston E; Cullen GP; Burley JR; Dolphin AC
    Neuroscience; 1995 Sep; 68(2):465-78. PubMed ID: 7477957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction.
    Katz E; Protti DA; Ferro PA; Rosato Siri MD; Uchitel OD
    Br J Pharmacol; 1997 Aug; 121(8):1531-40. PubMed ID: 9283685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release.
    Turner TJ; Adams ME; Dunlap K
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9518-22. PubMed ID: 8415733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of different calcium channels in K+- and veratridine-induced increases of cytosolic calcium concentration in rat cerebral cortical synaptosomes.
    Meder W; Fink K; Göthert M
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Dec; 356(6):797-805. PubMed ID: 9453466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons.
    Scholz KP; Miller RJ
    J Neurosci; 1995 Jun; 15(6):4612-7. PubMed ID: 7790927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of N-,P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor.
    Ambrósio AF; Malva JO; Carvalho AP; Carvalho CM
    Eur J Pharmacol; 1997 Dec; 340(2-3):301-10. PubMed ID: 9537827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes.
    Soliakov L; Wonnacott S
    J Neurochem; 1996 Jul; 67(1):163-70. PubMed ID: 8666987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the type of calcium channel primarily regulating GABA exocytosis from brain nerve endings.
    Sitges M; Chiu LM
    Neurochem Res; 1995 Sep; 20(9):1073-80. PubMed ID: 8570012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals.
    Xu YF; Hewett SJ; Atchison WD
    J Neurophysiol; 1998 Sep; 80(3):1056-69. PubMed ID: 9744921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.