BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

850 related articles for article (PubMed ID: 8608125)

  • 1. Mechanism of laminin chain assembly into a triple-stranded coiled-coil structure.
    Nomizu M; Utani A; Beck K; Otaka A; Roller PP; Yamada Y
    Biochemistry; 1996 Mar; 35(9):2885-93. PubMed ID: 8608125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective chain recognition in the C-terminal alpha-helical coiled-coil region of laminin.
    Kammerer RA; Antonsson P; Schulthess T; Fauser C; Engel J
    J Mol Biol; 1995 Jun; 250(1):64-73. PubMed ID: 7602597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of synthetic laminin peptides into a triple-stranded coiled-coil structure.
    Nomizu M; Otaka A; Utani A; Roller PP; Yamada Y
    J Biol Chem; 1994 Dec; 269(48):30386-92. PubMed ID: 7982952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic interactions in the coiled-coil domain of laminin determine the specificity of chain assembly.
    Beck K; Dixon TW; Engel J; Parry DA
    J Mol Biol; 1993 May; 231(2):311-23. PubMed ID: 8510149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of the alpha-helical coiled-coil domain in laminin by C-terminal disulfide bonds.
    Antonsson P; Kammerer RA; Schulthess T; Hänisch G; Engel J
    J Mol Biol; 1995 Jun; 250(1):74-9. PubMed ID: 7602598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two-stranded alpha-helical coiled-coil is an ideal model for studying protein stability and subunit interactions.
    Zhou NE; Zhu BY; Kay CM; Hodges RS
    Biopolymers; 1992 Apr; 32(4):419-26. PubMed ID: 1623137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A specific sequence of the laminin alpha 2 chain critical for the initiation of heterotrimer assembly.
    Utani A; Nomizu M; Sugiyama S; Miyamoto S; Roller PP; Yamada Y
    J Biol Chem; 1995 Feb; 270(7):3292-8. PubMed ID: 7852414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability.
    Hodges RS; Zhou NE; Kay CM; Semchuk PD
    Pept Res; 1990; 3(3):123-37. PubMed ID: 2134057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper.
    Kohn WD; Kay CM; Hodges RS
    Protein Sci; 1995 Feb; 4(2):237-50. PubMed ID: 7757012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of interhelical electrostatic repulsions between glutamic acid residues in controlling the dimerization and stability of two-stranded alpha-helical coiled-coils.
    Kohn WD; Monera OD; Kay CM; Hodges RS
    J Biol Chem; 1995 Oct; 270(43):25495-506. PubMed ID: 7592719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the buried glutamate in the alpha-helical coiled coil domain of the macrophage scavenger receptor.
    Suzuki K; Yamada T; Tanaka T
    Biochemistry; 1999 Feb; 38(6):1751-6. PubMed ID: 10026254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of acidic amino acid residues in the structural stability of snake cardiotoxins.
    Chiang CM; Chang SL; Lin HJ; Wu WG
    Biochemistry; 1996 Jul; 35(28):9177-86. PubMed ID: 8703923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus.
    Hillar A; Tripet B; Zoetewey D; Wood JM; Hodges RS; Boggs JM
    Biochemistry; 2003 Dec; 42(51):15170-8. PubMed ID: 14690427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminin chain assembly by triple and double stranded coiled-coil structures.
    Hunter I; Schulthess T; Engel J
    J Biol Chem; 1992 Mar; 267(9):6006-11. PubMed ID: 1556112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural stability of short subsequences of the tropomyosin chain.
    Holtzer ME; Crimmins DL; Holtzer A
    Biopolymers; 1995 Jan; 35(1):125-36. PubMed ID: 7696553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective assembly of laminin variants by human carcinoma cells.
    Wewer UM; Wayner EA; Hoffstrom BG; Lan F; Meyer-Nielsen B; Engvall E; Albrechtsen R
    Lab Invest; 1994 Nov; 71(5):719-30. PubMed ID: 7967523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Mol Biol; 1998 Nov; 283(5):993-1012. PubMed ID: 9799639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence comparisons of intermediate filament chains: evidence of a unique functional/structural role for coiled-coil segment 1A and linker L1.
    Smith TA; Strelkov SV; Burkhard P; Aebi U; Parry DA
    J Struct Biol; 2002; 137(1-2):128-45. PubMed ID: 12064940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.