BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 8608131)

  • 21. Functional changes in the regulatory subunit of the type II cyclic adenosine 3':5'-monophosphate-dependent protein kinase isozyme during normal and neoplastic lung development.
    Butley MS; Beer DG; Malkinson AM
    Cancer Res; 1984 Jun; 44(6):2689-97. PubMed ID: 6327022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endogenous tryptophan residues of cAPK regulatory subunit type IIbeta reveal local variations in environments and dynamics.
    Zawadzki KM; Pan CP; Barkley MD; Johnson D; Taylor SS
    Proteins; 2003 Jun; 51(4):552-61. PubMed ID: 12784214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consequences of cAMP-binding site mutations on the structural stability of the type I regulatory subunit of cAMP-dependent protein kinase.
    Cànaves JM; Leon DA; Taylor SS
    Biochemistry; 2000 Dec; 39(49):15022-31. PubMed ID: 11106480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PKA from Mucor circinelloides: model to study the role of linker I in the interaction between R and C subunits.
    Ocampo J; Moreno S; Rossi S
    Biochem Biophys Res Commun; 2007 Oct; 362(3):721-6. PubMed ID: 17761146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissection of the nucleotide and metal-phosphate binding sites in cAMP-dependent protein kinase.
    Herberg FW; Doyle ML; Cox S; Taylor SS
    Biochemistry; 1999 May; 38(19):6352-60. PubMed ID: 10320366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding.
    Herberg FW; Maleszka A; Eide T; Vossebein L; Tasken K
    J Mol Biol; 2000 Apr; 298(2):329-39. PubMed ID: 10764601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET).
    Prinz A; Diskar M; Erlbruch A; Herberg FW
    Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ala335 is essential for high-affinity cAMP-binding of both sites A and B of cAMP-dependent protein kinase type I.
    Zorn M; Fladmark KE; Ogreid D; Jastorff B; Døskeland SO; Dostmann WR
    FEBS Lett; 1995 Apr; 362(3):291-4. PubMed ID: 7729515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of MgATP in the activation and reassociation of cAMP-dependent protein kinase I: consequences of replacing the essential arginine in cAMP binding site A.
    Neitzel JJ; Dostmann WR; Taylor SS
    Biochemistry; 1991 Jan; 30(3):733-9. PubMed ID: 1846304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissecting interdomain communication within cAPK regulatory subunit type IIbeta using enhanced amide hydrogen/deuterium exchange mass spectrometry (DXMS).
    Zawadzki KM; Hamuro Y; Kim JS; Garrod S; Stranz DD; Taylor SS; Woods VL
    Protein Sci; 2003 Sep; 12(9):1980-90. PubMed ID: 12930997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissecting the cooperative reassociation of the regulatory and catalytic subunits of cAMP-dependent protein kinase. Role of Trp-196 in the catalytic subunit.
    Gibson RM; Taylor SS
    J Biol Chem; 1997 Dec; 272(51):31998-2005. PubMed ID: 9405392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping the functional domains of human recombinant phosphodiesterase 4A: structural requirements for catalytic activity and rolipram binding.
    Jacobitz S; McLaughlin MM; Livi GP; Burman M; Torphy TJ
    Mol Pharmacol; 1996 Oct; 50(4):891-9. PubMed ID: 8863835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissecting the domain structure of the regulatory subunit of cAMP-dependent protein kinase I and elucidating the role of MgATP.
    Ringheim GE; Taylor SS
    J Biol Chem; 1990 Mar; 265(9):4800-8. PubMed ID: 2156855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase.
    Grant BD; Hemmer W; Tsigelny I; Adams JA; Taylor SS
    Biochemistry; 1998 May; 37(21):7708-15. PubMed ID: 9601030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Myxococcus xanthus CbpB containing two cAMP-binding domains is involved in temperature and osmotic tolerances.
    Kimura Y; Nakato H; Ishibashi K; Kobayashi S
    FEMS Microbiol Lett; 2005 Mar; 244(1):75-83. PubMed ID: 15727824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isoleucine 368 is involved in low-affinity binding of N6-modified cAMP analogues to site B of the regulatory subunit of cAMP-dependent protein kinase I.
    Huq I; Dostmann WR; Ogreid D
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):337-43. PubMed ID: 8645227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A constitutively active holoenzyme form of the cAMP-dependent protein kinase.
    Wang YH; Scott JD; McKnight GS; Krebs EG
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2446-50. PubMed ID: 1848703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of regulatory subunit of type I cyclic AMP-dependent protein kinase: biphasic effects of cyclic AMP in intact S49 mouse lymphoma cells.
    Russell JL; Steinberg RA
    J Cell Physiol; 1987 Feb; 130(2):207-13. PubMed ID: 3029147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A point mutation abolishes binding of cAMP to site A in the regulatory subunit of cAMP-dependent protein kinase.
    Bubis J; Neitzel JJ; Saraswat LD; Taylor SS
    J Biol Chem; 1988 Jul; 263(20):9668-73. PubMed ID: 2898473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of the carboxyl-terminal regional of the cAMP-dependent protein kinase type I alpha regulatory subunit to cyclic nucleotide interactions.
    Kapphahn MA; Shabb JB
    Arch Biochem Biophys; 1997 Dec; 348(2):347-56. PubMed ID: 9434747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.