BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 8608601)

  • 1. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules.
    Gerasimenko OV; Gerasimenko JV; Belan PV; Petersen OH
    Cell; 1996 Feb; 84(3):473-80. PubMed ID: 8608601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cyclic ADP ribose antagonist 8-NH2-cADP-ribose blocks cholecystokinin-evoked cytosolic Ca2+ spiking in pancreatic acinar cells.
    Cancela JM; Petersen OH
    Pflugers Arch; 1998 Apr; 435(5):746-8. PubMed ID: 9479030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local calcium spiking in pancreatic acinar cells.
    Petersen OH
    Ciba Found Symp; 1995; 188():85-94; discussion 94-103. PubMed ID: 7587625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini.
    Leite MF; Burgstahler AD; Nathanson MH
    Gastroenterology; 2002 Feb; 122(2):415-27. PubMed ID: 11832456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular glucose switches between cyclic ADP-ribose and inositol trisphosphate triggering of cytosolic Ca2+ spiking.
    Cancela JM; Mogami H; Tepikin AV; Petersen OH
    Curr Biol; 1998 Jul; 8(15):865-8. PubMed ID: 9705935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers.
    Cancela JM; Van Coppenolle F; Galione A; Tepikin AV; Petersen OH
    EMBO J; 2002 Mar; 21(5):909-19. PubMed ID: 11867519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decrease of acidity inside zymogen granules inhibits acetylcholine- or inositol trisphosphate-evoked cytosolic Ca2+ spiking in pancreatic acinar cells.
    Titievsky AV; Takeo T; Tepikin AV; Petersen OH
    Pflugers Arch; 1996 Sep; 432(5):938-40. PubMed ID: 8772146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 7-Deaza cyclic adenosine 5'-diphosphate ribose: first example of a Ca(2+)-mobilizing partial agonist related to cyclic adenosine 5'-diphosphate ribose.
    Bailey VC; Sethi JK; Fortt SM; Galione A; Potter BV
    Chem Biol; 1997 Jan; 4(1):51-61. PubMed ID: 9070427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells.
    Cancela JM; Churchill GC; Galione A
    Nature; 1999 Mar; 398(6722):74-6. PubMed ID: 10078532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells.
    Yule DI; Ernst SA; Ohnishi H; Wojcikiewicz RJ
    J Biol Chem; 1997 Apr; 272(14):9093-8. PubMed ID: 9083036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inositol trisphosphate and cyclic ADP ribose as long range messengers generating local subcellular calcium signals.
    Petersen OH
    J Physiol Paris; 1995; 89(3):125-7. PubMed ID: 7581301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells.
    Thorn P; Gerasimenko O; Petersen OH
    EMBO J; 1994 May; 13(9):2038-43. PubMed ID: 7514529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope.
    Gerasimenko OV; Gerasimenko JV; Tepikin AV; Petersen OH
    Cell; 1995 Feb; 80(3):439-44. PubMed ID: 7859285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic calcium release in the sea urchin egg by ryanodine and cyclic ADP ribose.
    Buck WR; Hoffmann EE; Rakow TL; Shen SS
    Dev Biol; 1994 May; 163(1):1-10. PubMed ID: 8174765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: possible involvement of smooth endoplasmic reticulum.
    Brailoiu E; Miyamoto MD
    Neuroscience; 2000; 95(4):927-31. PubMed ID: 10682700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiation of depolarization-induced calcium release from skeletal muscle triads by cyclic ADP-ribose and inositol 1,4,5-trisphosphate.
    Yamaguchi N; Kasai M
    Biochem Biophys Res Commun; 1997 Nov; 240(3):772-7. PubMed ID: 9398643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate.
    Dargie PJ; Agre MC; Lee HC
    Cell Regul; 1990 Feb; 1(3):279-90. PubMed ID: 2100201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic beta-cells.
    Takasawa S; Akiyama T; Nata K; Kuroki M; Tohgo A; Noguchi N; Kobayashi S; Kato I; Katada T; Okamoto H
    J Biol Chem; 1998 Jan; 273(5):2497-500. PubMed ID: 9446548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of intracellular calcium stores in single permeabilized lens cells.
    Churchill GC; Louis CF
    Am J Physiol; 1999 Feb; 276(2):C426-34. PubMed ID: 9950770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between intracellular Ca2+ stores: Ca2+ released from the NAADP pool potentiates cADPR-induced Ca2+ release.
    Chini EN
    Braz J Med Biol Res; 2002 May; 35(5):543-7. PubMed ID: 12011938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.