BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8609024)

  • 1. A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents.
    Schell WR; Linkov I; Myttenaere C; Morel B
    Health Phys; 1996 Mar; 70(3):318-35. PubMed ID: 8609024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The assessment of 137Cs accumulation by pine tree plantations in the closest radioactive fallouts originated from the Chernobyl Nuclear Power Plant].
    Perevolotskiĭ AN; Bulavik IM; Perevolotskaia TV; Paskrobko LA; Andrush SN
    Radiats Biol Radioecol; 2007; 47(6):746-52. PubMed ID: 18380336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Consequences of radioactive pollution of forests in the zone affected by the accident at the Chernobyl power plant].
    Tikhomirov FA; Shcheglov AI
    Radiats Biol Radioecol; 1997; 37(4):664-72. PubMed ID: 9599627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Modelling of the biological availability of 137Cs in soils subjected to contamination after the accident at the Chernobyl Atomic Electric Power Station].
    Fesenko SV; Spiridonov SI; Sanzharova NI; Aleksakhin RM
    Radiats Biol Radioecol; 1996; 36(4):479-87. PubMed ID: 8925021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Distribution of ¹³⁷Cs in Soil of Spruce Forest in the Distant Zone of Chernobyl Fallout.
    Lipatov DN; Shcheglov AI; Manakhov DV; Tsvetnova OB
    Radiats Biol Radioecol; 2017 Jan; 57(1):86-97. PubMed ID: 30698936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Basic features of seasonal and multi-year dynamics of Cs-137 and Sr-90 in wood].
    Shcheglov AI; Tsvetnova OB
    Radiats Biol Radioecol; 2004; 44(1):113-7. PubMed ID: 15060951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and assessment of a simple ecological model (TRIPS) for forests contaminated by radiocesium fallout.
    Thiry Y; Albrecht A; Tanaka T
    J Environ Radioact; 2018 Oct; 190-191():149-159. PubMed ID: 29793757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of 137Cs to the total absorbed gamma dose rate in air in a Greek forest ecosystem: measurements and Monte Carlo computations.
    Clouvas A; Xanthos S; Antonopoulos-Domis M; Alifragis DA
    Health Phys; 1999 Jan; 76(1):36-43. PubMed ID: 9883945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of radioactive exposure from 137Cs in contaminated areas of Northern Ukraine.
    Handl J; Beltz D; Botsch W; Harb S; Jakob D; Michel R; Romantschuk LD
    Health Phys; 2003 Apr; 84(4):502-17. PubMed ID: 12705449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiocesium contamination in a submediterranean semi-natural ecosystem following the Chernobyl accident: measurements and models.
    Antonopoulos-Domis M; Clouvas A; Xanthos S; Alifrangis DA
    Health Phys; 1997 Feb; 72(2):243-55. PubMed ID: 9003709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents.
    Calmon P; Gonze MA; Mourlon Ch
    Sci Total Environ; 2015 Oct; 529():30-9. PubMed ID: 26005747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of processes governing long-term accumulation of 137Cs by forest trees following the Chernobyl accident.
    Fesenko SV; Soukhova NV; Sanzharova NI; Avila R; Spiridonov SI; Klein D; Lucot E; Badot PM
    Radiat Environ Biophys; 2001 Jun; 40(2):105-13. PubMed ID: 11484781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands.
    Alewell C; Meusburger K; Juretzko G; Mabit L; Ketterer ME
    Chemosphere; 2014 May; 103():274-80. PubMed ID: 24374184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating remediation of radionuclide contaminated forest near Iwaki, Japan, using radiometric methods.
    Sanderson DCW; Cresswell AJ; Tamura K; Iwasaka T; Matsuzaki K
    J Environ Radioact; 2016 Oct; 162-163():118-128. PubMed ID: 27232824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of 137Cs in coniferous forests following the application of wood-ash.
    Högbom L; Nohrstedt HO
    Sci Total Environ; 2001 Dec; 280(1-3):133-41. PubMed ID: 11763261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modeling of Cs-137 vertical soil transfer by a tree root system].
    Bulgakov AA; Konoplev AV
    Radiats Biol Radioecol; 2002; 42(5):556-60. PubMed ID: 12449825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal exposure from the ingestion of foods contaminated by 137Cs after the Chernobyl accident. Report 1. General model: ingestion doses and countermeasure effectiveness for the adults of Rovno Oblast of Ukraine.
    Likhtarev IA; Kovgan LN; Vavilov SE; Gluvchinsky RR; Perevoznikov ON; Litvinets LN; Anspaugh LR; Kercher JR; Bouville A
    Health Phys; 1996 Mar; 70(3):297-317. PubMed ID: 8609023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fallout radioactivity in soil and food samples in the Ukraine: measurements of iodine, plutonium, cesium, and strontium isotopes.
    Hoshi M; Yamamoto M; Kawamura H; Shinohara K; Shibata Y; Kozlenko MT; Takatsuji T; Yamashita S; Namba H; Yokoyama N
    Health Phys; 1994 Aug; 67(2):187-91. PubMed ID: 7619095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radionuclides in the liquid phase of the forest soils at the Chernobyl accident zone.
    Agapkina GI; Tikhomirov FA
    Sci Total Environ; 1994 Dec; 157(1-3):267-73. PubMed ID: 7839114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.
    Goor F; Thiry Y
    Sci Total Environ; 2004 Jun; 325(1-3):163-80. PubMed ID: 15144787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.