These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8609284)

  • 41. Distortion product otoacoustic emission input/output functions in normal-hearing and hearing-impaired human ears.
    Dorn PA; Konrad-Martin D; Neely ST; Keefe DH; Cyr E; Gorga MP
    J Acoust Soc Am; 2001 Dec; 110(6):3119-31. PubMed ID: 11785813
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transient-evoked and 2F1-F2 distortion product oto-acoustic emissions in dogs: preliminary findings.
    Sockalingam R; Filippich L; Sommerlad S; Murdoch B; Charles B
    Audiol Neurootol; 1998; 3(6):373-85. PubMed ID: 9732131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distortion product otoacoustic emissions in human newborns and adults. II. Level effects.
    Lasky RE
    J Acoust Soc Am; 1998 Feb; 103(2):992-1000. PubMed ID: 9479752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Origin of the bell-like dependence of the DPOAE amplitude on primary frequency ratio.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2001 Dec; 110(6):3097-106. PubMed ID: 11785811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs].
    Kong W; Yang Y; Zhang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug; 36(4):271-4. PubMed ID: 12761994
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distortion product emission latency in normal hearing adults.
    Marques Vde V; Azevedo MF
    Pro Fono; 2004; 16(2):203-8. PubMed ID: 15311745
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE; Long KM; Lees SE
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Measurement of distortion product otoacoustic emissions in guinea pig].
    Yang Y; Kong W; Zhang W
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2001 Sep; 15(9):411-3. PubMed ID: 12541893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels.
    Wolter NE; Harrison RV; James AL
    Audiol Neurootol; 2014; 19(1):41-8. PubMed ID: 24335024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters.
    Whitehead ML; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1992 Mar; 91(3):1587-607. PubMed ID: 1564196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two sources of acoustic distortion products from the human cochlea.
    Brown AM; Harris FP; Beveridge HA
    J Acoust Soc Am; 1996 Nov; 100(5):3260-7. PubMed ID: 8914308
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of distortion product emissions in the gerbil: "filter" response and signal delay.
    Mills DM; Rubel EW
    J Acoust Soc Am; 1997 Jan; 101(1):395-411. PubMed ID: 9000732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Local cochlear mechanical responses revealed through outer hair cell receptor potential measurements.
    Lukashkin AN; Russell IJ; Rybdylova O
    Biophys J; 2024 Sep; 123(18):3163-3175. PubMed ID: 39014895
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Descriptive Characterization of High-Frequency Distortion Product Otoacoustic Emission Source Components in Children.
    Dreisbach L; Konrad-Martin D; Gagner C; Reavis KM; Jacobs PG
    J Speech Lang Hear Res; 2023 Aug; 66(8):2950-2966. PubMed ID: 37467378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound.
    Russell IJ; Lukashkina VA; Levic S; Cho YW; Lukashkin AN; Ng L; Forrest D
    Sci Adv; 2020 Jun; 6(24):eaba2634. PubMed ID: 32577518
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cochlear Mechanisms and Otoacoustic Emission Test Performance.
    Go NA; Stamper GC; Johnson TA
    Ear Hear; 2019; 40(2):401-417. PubMed ID: 29952805
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Input-output functions of the nonlinear-distortion component of distortion-product otoacoustic emissions in normal and hearing-impaired human ears.
    Zelle D; Lorenz L; Thiericke JP; Gummer AW; Dalhoff E
    J Acoust Soc Am; 2017 May; 141(5):3203. PubMed ID: 28599560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.