These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Studies on the energy metabolism during anaerobic fermentation of glucose by baker's yeast. Hoogerheide JC Radiat Environ Biophys; 1975; 11(4):295-307. PubMed ID: 124899 [TBL] [Abstract][Full Text] [Related]
5. The physiological function of nitrate reduction in Clostridium perfringens. Hasan SM; Hall JB J Gen Microbiol; 1975 Mar; 87(1):120-8. PubMed ID: 166143 [TBL] [Abstract][Full Text] [Related]
6. Conservation and transformation of energy by bacterial membranes. Harold FM Bacteriol Rev; 1972 Jun; 36(2):172-230. PubMed ID: 4261111 [No Abstract] [Full Text] [Related]
7. The regulation of respiration rate in growing bacteria. Harrison DE Adv Microb Physiol; 1976; 14(11):243-313. PubMed ID: 12649 [No Abstract] [Full Text] [Related]
8. Electron Bifurcation: A Long-Hidden Energy-Coupling Mechanism. Müller V; Chowdhury NP; Basen M Annu Rev Microbiol; 2018 Sep; 72():331-353. PubMed ID: 29924687 [TBL] [Abstract][Full Text] [Related]
9. Enzymes of intermediary metabolism of Butyrivibrio fibrisolvens and Ruminococcus albus grown under glucose limitation. Kistner A; Kotzé JP Can J Microbiol; 1973 Sep; 19(9):1119-27. PubMed ID: 4796347 [No Abstract] [Full Text] [Related]
11. Evolution of anaerobic-energy-yielding metabolic pathways of the procaryotes. Horvath RS J Theor Biol; 1974 Dec; 48(2):361-71. PubMed ID: 4459590 [No Abstract] [Full Text] [Related]
12. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Converti A; Perego P Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):303-9. PubMed ID: 12111162 [TBL] [Abstract][Full Text] [Related]
13. Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion. Skulachev VP Eur J Biochem; 1985 Sep; 151(2):199-208. PubMed ID: 2863140 [TBL] [Abstract][Full Text] [Related]
14. Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. de Vries W; van Wyck-Kapteyn WM; Stouthamer AH J Gen Microbiol; 1973 May; 76(1):31-41. PubMed ID: 4353042 [No Abstract] [Full Text] [Related]
15. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity. Abbott DA; van den Brink J; Minneboo IM; Pronk JT; van Maris AJ FEMS Yeast Res; 2009 May; 9(3):349-57. PubMed ID: 19416100 [TBL] [Abstract][Full Text] [Related]
16. The evolution of chemiosmotic energy coupling. Raven JA; Smith FA J Theor Biol; 1976 Apr; 57(2):301-12. PubMed ID: 957662 [No Abstract] [Full Text] [Related]
17. A new thermodynamically based correlation of chemotrophic biomass yields. Heijnen JJ Antonie Van Leeuwenhoek; 1991; 60(3-4):235-56. PubMed ID: 1807196 [TBL] [Abstract][Full Text] [Related]
18. The use of stoichiometric relations for the description and analysis of microbial cultures. de Hollander JA Antonie Van Leeuwenhoek; 1991; 60(3-4):257-73. PubMed ID: 1807197 [TBL] [Abstract][Full Text] [Related]
19. Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation. Lidén G; Persson A; Gustafsson L; Niklasson C Appl Microbiol Biotechnol; 1995 Nov; 43(6):1034-8. PubMed ID: 8590653 [TBL] [Abstract][Full Text] [Related]
20. Metabolic reprogramming under microaerobic and anaerobic conditions in bacteria. Shan Y; Lai Y; Yan A Subcell Biochem; 2012; 64():159-79. PubMed ID: 23080250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]