BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 8611514)

  • 1. A highly salt-dependent enthalpy change for Escherichia coli SSB protein-nucleic acid binding due to ion-protein interactions.
    Lohman TM; Overman LB; Ferrari ME; Kozlov AG
    Biochemistry; 1996 Apr; 35(16):5272-9. PubMed ID: 8611514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy.
    Kozlov AG; Lohman TM
    J Mol Biol; 1998 May; 278(5):999-1014. PubMed ID: 9600857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Escherichia coli SSB protein-single stranded nucleic acid interactions.
    Overman LB; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):165-78. PubMed ID: 8107102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent heat capacity change accompanying a nonspecific protein-DNA interaction. Escherichia coli SSB tetramer binding to oligodeoxyadenylates.
    Ferrari ME; Lohman TM
    Biochemistry; 1994 Nov; 33(43):12896-910. PubMed ID: 7947696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of base composition on the negative cooperativity and binding mode transitions of Escherichia coli SSB-single-stranded DNA complexes.
    Lohman TM; Bujalowski W
    Biochemistry; 1994 May; 33(20):6167-76. PubMed ID: 8193130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenine base unstacking dominates the observed enthalpy and heat capacity changes for the Escherichia coli SSB tetramer binding to single-stranded oligoadenylates.
    Kozlov AG; Lohman TM
    Biochemistry; 1999 Jun; 38(22):7388-97. PubMed ID: 10353851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity.
    Overman LB; Bujalowski W; Lohman TM
    Biochemistry; 1988 Jan; 27(1):456-71. PubMed ID: 3280021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of monovalent anions on a temperature-dependent heat capacity change for Escherichia coli SSB tetramer binding to single-stranded DNA.
    Kozlov AG; Lohman TM
    Biochemistry; 2006 Apr; 45(16):5190-205. PubMed ID: 16618108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large contributions of coupled protonation equilibria to the observed enthalpy and heat capacity changes for ssDNA binding to Escherichia coli SSB protein.
    Kozlov AG; Lohman TM
    Proteins; 2000; Suppl 4():8-22. PubMed ID: 11013397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode.
    Ferrari ME; Bujalowski W; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):106-23. PubMed ID: 8107097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices.
    Holbrook JA; Capp MW; Saecker RM; Record MT
    Biochemistry; 1999 Jun; 38(26):8409-22. PubMed ID: 10387087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. II. Salt, temperature and oligonucleotide length effects.
    Bujalowski W; Lohman TM
    J Mol Biol; 1989 May; 207(1):269-88. PubMed ID: 2661833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of the dimeric Deinococcus radiodurans single-stranded DNA binding protein to single-stranded DNA.
    Kozlov AG; Eggington JM; Cox MM; Lohman TM
    Biochemistry; 2010 Sep; 49(38):8266-75. PubMed ID: 20795631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration.
    Lohman TM; Overman LB
    J Biol Chem; 1985 Mar; 260(6):3594-603. PubMed ID: 3882711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae replication protein A binds to single-stranded DNA in multiple salt-dependent modes.
    Kumaran S; Kozlov AG; Lohman TM
    Biochemistry; 2006 Oct; 45(39):11958-73. PubMed ID: 17002295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of single-stranded RNA and DNA interactions with oligolysines containing tryptophan. Effects of base composition.
    Mascotti DP; Lohman TM
    Biochemistry; 1993 Oct; 32(40):10568-79. PubMed ID: 7691177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer.
    Jezewska MJ; Kim US; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2129-45. PubMed ID: 8652555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited co-operativity in protein-nucleic acid interactions. A thermodynamic model for the interactions of Escherichia coli single strand binding protein with single-stranded nucleic acids in the "beaded", (SSB)65 mode.
    Bujalowski W; Lohman TM
    J Mol Biol; 1987 Jun; 195(4):897-907. PubMed ID: 3309344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.