These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8611611)

  • 21. Hydrophobic and electrostatic interaction chromatography for estimating changes in cell surface charge of Escherichia coli cells treated with pulsed electric fields.
    Ukuku DO; Yuk HG; Zhang H
    Foodborne Pathog Dis; 2011 Oct; 8(10):1103-9. PubMed ID: 21668373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation.
    Freeman SA; Wang MA; Weaver JC
    Biophys J; 1994 Jul; 67(1):42-56. PubMed ID: 7919016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model of the bacterial flagellar motor: response to varying viscous load.
    Adam G
    J Mechanochem Cell Motil; 1977 Dec; 4(4):235-53. PubMed ID: 112211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical and experimental analysis of electroporated membrane conductance in cell suspension.
    Suzuki DO; Ramos A; Ribeiro MC; Cazarolli LH; Silva FR; Leite LD; Marques JL
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3310-8. PubMed ID: 21193368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization.
    Asami K; Hanai T; Koizumi N
    Biophys J; 1980 Aug; 31(2):215-28. PubMed ID: 7020783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment.
    Valic B; Golzio M; Pavlin M; Schatz A; Faurie C; Gabriel B; Teissié J; Rols MP; Miklavcic D
    Eur Biophys J; 2003 Sep; 32(6):519-28. PubMed ID: 12712266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of input voltage frequency on the distribution of electrical stresses on the cell surface based on single-cell dielectrophoresis analysis.
    Dastani K; Moghimi Zand M; Kavand H; Javidi R; Hadi A; Valadkhani Z; Renaud P
    Sci Rep; 2020 Jan; 10(1):68. PubMed ID: 31919394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.
    Dermol J; Miklavčič D
    Bioelectrochemistry; 2014 Dec; 100():52-61. PubMed ID: 24731594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues.
    Daniels C; Rubinsky B
    J Biomech Eng; 2009 Jul; 131(7):071006. PubMed ID: 19640131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved energy model for membrane electroporation in biological cells subjected to electrical pulses.
    Joshi RP; Hu Q; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041920. PubMed ID: 12005886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lethal effects of high-voltage pulses on E. coli K12.
    Hülsheger H; Niemann EG
    Radiat Environ Biophys; 1980; 18(4):281-8. PubMed ID: 7012900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The structural basis of outer membrane permeability in gram-negative bacteria (author's transl)].
    Nakae T; Nikaido H
    Nihon Saikingaku Zasshi; 1978; 33(6):715-27. PubMed ID: 368372
    [No Abstract]   [Full Text] [Related]  

  • 33. Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields.
    Bryant G; Wolfe J
    J Membr Biol; 1987; 96(2):129-39. PubMed ID: 3599064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical evaluation of wall teichoic acids in the cavitation-mediated pores formation in Gram-positive bacteria subjected to an electric field.
    Rauch C; Leigh J
    Biochim Biophys Acta; 2015 Apr; 1850(4):595-601. PubMed ID: 25497464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioelectrorheological model of the cell. VI. Experimental verification of the rheological model of cytoplasmic membrane.
    Pawlowski P; Szutowicz I; Rózycki S; Zieliński J; Fikus M
    Biophys J; 1996 Feb; 70(2):1024-6. PubMed ID: 8789120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the electrostatic field strength at the site of exocytosis in adrenal chromaffin cells.
    Rosenheck K
    Biophys J; 1998 Sep; 75(3):1237-43. PubMed ID: 9726926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival.
    Grys M; Madeja Z; Korohoda W
    Cell Mol Biol Lett; 2017; 22():1. PubMed ID: 28536632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA transfection of Escherichia coli by electroporation.
    Taketo A
    Biochim Biophys Acta; 1988 Mar; 949(3):318-24. PubMed ID: 3280031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].
    Zhang Y; Zeng XA; Wen QB; Li L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):156-60. PubMed ID: 18422142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.