These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8611959)

  • 1. High-performance liquid chromatographic method for the analysis of imipramine metabolism in vitro by liver and brain microsomes.
    Sequeira DJ; Strobel HW
    J Chromatogr B Biomed Appl; 1995 Nov; 673(2):251-8. PubMed ID: 8611959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of imipramine and seven of its metabolites in human liver microsomes by a high-performance liquid chromatographic method.
    Zeugin TB; Brosen K; Meyer UA
    Anal Biochem; 1990 Aug; 189(1):99-102. PubMed ID: 2278396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biphasic kinetics of imipramine N-oxidation in rat brain microsomes.
    Narimatsu S; Yamamoto S; Koitabashi T; Kato R; Masubuchi Y; Suzuki T; Horie T
    Biol Pharm Bull; 1999 Mar; 22(3):253-6. PubMed ID: 10220279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of neuroleptics on imipramine demethylation in rat liver microsomes and imipramine and desipramine level in the rat brain.
    Daniel W; Melzacka M
    Biochem Pharmacol; 1986 Oct; 35(19):3249-53. PubMed ID: 2876708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance liquid chromatographic method for the determination of (-)-verbenone 10-hydroxylation catalyzed by rat liver microsomes.
    Miyazawa M; Sugie A; Shimada T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Aug; 793(2):291-6. PubMed ID: 12906903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel pathway interactions in imipramine metabolism in rats.
    Chiba M; Fujita S; Suzuki T
    J Pharm Sci; 1988 Nov; 77(11):944-7. PubMed ID: 3225754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance liquid chromatography of imipramine and six metabolites in human plasma and urine.
    Nielsen KK; Brøsen K
    J Chromatogr; 1993 Jan; 612(1):87-94. PubMed ID: 8454708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine.
    Brøsen K; Zeugin T; Meyer UA
    Clin Pharmacol Ther; 1991 Jun; 49(6):609-17. PubMed ID: 2060250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolism of imipramine and its metabolites by rat liver microsomes.
    Bickel MH; Baggiolini M
    Biochem Pharmacol; 1966 Aug; 15(8):1155-69. PubMed ID: 5973159
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantification of imipramine and its major metabolites in whole blood, brain, and other tissues of the rat by liquid chromatography.
    Stout SA; DeVane CL
    Psychopharmacology (Berl); 1984; 84(1):39-41. PubMed ID: 6436888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake, subcellular distribution, and transfer processes of imipramine and its metabolites formed in rat liver perfusion systems.
    Bickel MH; Börner H
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 284(4):339-52. PubMed ID: 4281060
    [No Abstract]   [Full Text] [Related]  

  • 12. Simultaneous determination of imipramine, desipramine, and their 2-hydroxy metabolites in plasma by ion-pair reversed-phase high-performance liquid chromatography with amperometric detection.
    Suckow RF; Cooper TB
    J Pharm Sci; 1981 Mar; 70(3):257-61. PubMed ID: 7264887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of S-mephenytoin 4'-hydroxylase in imipramine metabolism by human liver microsomes: a two-enzyme kinetic analysis of N-demethylation and 2-hydroxylation.
    Chiba K; Saitoh A; Koyama E; Tani M; Hayashi M; Ishizaki T
    Br J Clin Pharmacol; 1994 Mar; 37(3):237-42. PubMed ID: 8198931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid microsample analysis of imipramine and desipramine by reversed-phase high-performance liquid chromatography with ultraviolet detection.
    Yoo SD; Holladay JW; Fincher TK; Dewey MJ
    J Chromatogr B Biomed Appl; 1995 Jun; 668(2):338-42. PubMed ID: 7581871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of lofepramine and imipramine in liver microsomes from rat and man.
    Strandgården K; Gunnarsson PO
    Xenobiotica; 1994 Aug; 24(8):703-11. PubMed ID: 7839694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro metabolism of imipramine by brain microsomes: effects of inhibitors and exogenous cytochrome P450 reductase.
    Sequeira DJ; Strobel HW
    Brain Res; 1996 Oct; 738(1):24-31. PubMed ID: 8949923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic properties of the metabolism of imipramine and desipramine in isolated rat hepatocytes.
    Chiba M; Fujita S; Suzuki T
    Biochem Pharmacol; 1990 Jan; 39(2):367-72. PubMed ID: 2302258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase I metabolism of imipramine by microsomes of small intestine in comparison with metabolism by liver microsomes.
    Christ W; Hecker W; Junge H; Stille G
    Naunyn Schmiedebergs Arch Pharmacol; 1983 Jun; 323(2):176-82. PubMed ID: 6888570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of 2-hydroxyimipramine in an imipramine-related fatality.
    Fraser AD; Susnik E; Isner AF
    J Forensic Sci; 1987 Mar; 32(2):543-9. PubMed ID: 3572345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isocratic high-performance liquid chromatographic method for the separation of testosterone metabolites.
    Sanwald P; Blankson EA; Duléry BD; Schoun J; Huebert ND; Dow J
    J Chromatogr B Biomed Appl; 1995 Oct; 672(2):207-15. PubMed ID: 8581126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.