These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 8612278)
1. The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis. Aldaz H; Schuster E; Baker TA Cell; 1996 Apr; 85(2):257-69. PubMed ID: 8612278 [TBL] [Abstract][Full Text] [Related]
2. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase. Savilahti H; Mizuuchi K Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279 [TBL] [Abstract][Full Text] [Related]
3. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Williams TL; Jackson EL; Carritte A; Baker TA Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558 [TBL] [Abstract][Full Text] [Related]
4. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Levchenko I; Yamauchi M; Baker TA Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582 [TBL] [Abstract][Full Text] [Related]
5. Interactions of the transposase with the ends of Mu: formation of specific nucleoprotein structures and non-cooperative binding of the transposase to its binding sites. Groenen MA; Vollering M; Krijgsman P; van Drunen K; van de Putte P Nucleic Acids Res; 1987 Nov; 15(21):8831-44. PubMed ID: 2825121 [TBL] [Abstract][Full Text] [Related]
6. MuB protein allosterically activates strand transfer by the transposase of phage Mu. Baker TA; Mizuuchi M; Mizuuchi K Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076 [TBL] [Abstract][Full Text] [Related]
7. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition. Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730 [TBL] [Abstract][Full Text] [Related]
8. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Pathania S; Jayaram M; Harshey RM Cell; 2002 May; 109(4):425-36. PubMed ID: 12086600 [TBL] [Abstract][Full Text] [Related]
9. Identification of residues in the Mu transposase essential for catalysis. Baker TA; Luo L Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6654-8. PubMed ID: 7912831 [TBL] [Abstract][Full Text] [Related]
10. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers. Yang JY; Jayaram M; Harshey RM Cell; 1996 May; 85(3):447-55. PubMed ID: 8616899 [TBL] [Abstract][Full Text] [Related]
11. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. Benjamin KR; Abola AP; Kanaar R; Cozzarelli NR J Mol Biol; 1996 Feb; 256(1):50-65. PubMed ID: 8609613 [TBL] [Abstract][Full Text] [Related]
12. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction. Naigamwalla DZ; Coros CJ; Wu Z; Chaconas G J Mol Biol; 1998 Sep; 282(2):265-74. PubMed ID: 9735286 [TBL] [Abstract][Full Text] [Related]
13. Characterization of functionally important sites in the bacteriophage Mu transposase protein. Ulycznyj PI; Forghani F; DuBow MS Mol Gen Genet; 1994 Feb; 242(3):272-9. PubMed ID: 8107674 [TBL] [Abstract][Full Text] [Related]
14. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage. Wu Z; Chaconas G EMBO J; 1995 Aug; 14(15):3835-43. PubMed ID: 7641701 [TBL] [Abstract][Full Text] [Related]
15. Complete transposition requires four active monomers in the mu transposase tetramer. Baker TA; Kremenstova E; Luo L Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906 [TBL] [Abstract][Full Text] [Related]
16. A subsequence-specific DNA-binding domain resides in the 13 kDa amino terminus of the bacteriophage Mu transposase protein. Tolias PP; DuBow MS J Mol Recognit; 1989 Apr; 1(4):172-8. PubMed ID: 2561072 [TBL] [Abstract][Full Text] [Related]
17. MuA transposase separates DNA sequence recognition from catalysis. Goldhaber-Gordon I; Early MH; Baker TA Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976 [TBL] [Abstract][Full Text] [Related]
18. Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac. van Drunen CM; Mientjes E; van Zuylen O; van de Putte P; Goosen N Nucleic Acids Res; 1994 Mar; 22(5):773-9. PubMed ID: 8139917 [TBL] [Abstract][Full Text] [Related]
19. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Mizuuchi M; Baker TA; Mizuuchi K Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467 [TBL] [Abstract][Full Text] [Related]
20. A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition. Pathania S; Jayaram M; Harshey RM EMBO J; 2003 Jul; 22(14):3725-36. PubMed ID: 12853487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]