These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 861244)

  • 1. A carbon-13 spin lattice relaxation study of alumichrome at 25.1 MHz and 90.5 MHz.
    Llinás M; Meier W; Wüthrich K
    Biochim Biophys Acta; 1977 May; 492(1):1-11. PubMed ID: 861244
    [No Abstract]   [Full Text] [Related]  

  • 2. A nitrogen-15 spin-lattice relaxation study of alumichrome.
    Llinás M; Wüthrich K
    Biochim Biophys Acta; 1978 Jan; 532(1):29-40. PubMed ID: 620055
    [No Abstract]   [Full Text] [Related]  

  • 3. Nitrogen-15 nuclear magnetic resonance spectrum of alumichrome. Detection by a double resonance Fourier transform technique.
    Llinás M; Horsley WJ; Klein MP
    J Am Chem Soc; 1976 Nov; 98(24):7554-8. PubMed ID: 993494
    [No Abstract]   [Full Text] [Related]  

  • 4. Amide proton spin-lattice relaxation in polypeptides. A field-dependence study of the proton and nitrogen dipolar interactions in alumichrome.
    Llinás M; Klein MP; Wüthrich K
    Biophys J; 1978 Dec; 24(3):849-62. PubMed ID: 737289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete assignment of carbon signals in a stereospecific peptide via selective and single off-resonance proton decoupling experiments. Analysis of the carbon-13 nuclear magnetic resonance spectrum of alumichrome at 67.88 MHz.
    De Marco A; Llinás M
    Biochemistry; 1979 Sep; 18(18):3846-54. PubMed ID: 486399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide hydrogen bonding. Conformation dependence of the carbonyl carbon-13 nuclear magnetic resonance chemical shifts in ferrichrome. A study by 13C-[15N] Fourier double resonance spectroscopy1a.
    Llinás M; Wilson DM; Klein MP
    J Am Chem Soc; 1977 Oct; 99(21):6846-50. PubMed ID: 903527
    [No Abstract]   [Full Text] [Related]  

  • 7. Peptide strain. Conformation dependence of the carbon-13 nuclear magnetic resonance chemical shifts in the ferrichromes.
    Llinás M; Wilson DM; Neilands JB
    J Am Chem Soc; 1977 May; 99(11):3631-7. PubMed ID: 858869
    [No Abstract]   [Full Text] [Related]  

  • 8. The solution conformation of the ferrichromes. IV. pH dependence of the individual slow amide hydrogen-deuterium exchange in alumichrome.
    Llinás M; Klein MP; Neilands JB
    J Biol Chem; 1973 Feb; 248(3):915-23. PubMed ID: 4684713
    [No Abstract]   [Full Text] [Related]  

  • 9. The structure of two alanine containing ferrichromes: sequence determination by proton magnetic resonance.
    Llinás M; Neilands JB
    Biophys Struct Mech; 1976 Aug; 2(2):105-17. PubMed ID: 963232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The solution conformations of ferrichrome and deferriferrichrome determined by 1H-NMR spectroscopy and computational modeling.
    Constantine KL; De Marco A; Madrid M; Brooks CL; Llinás M
    Biopolymers; 1990; 30(3-4):239-56. PubMed ID: 2279065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous exchange kinetics of peptide amide protons in aqueous solutions.
    Krauss EM; Cowburn D
    Int J Pept Protein Res; 1981 Jan; 17(1):42-7. PubMed ID: 6164656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear magnetic resonance spectroscopy. Carbon-13 spin-lattice relaxation time measurements of amino acids.
    Armitage IM; Huber H; Pearson H; Roberts JD
    Proc Natl Acad Sci U S A; 1974 May; 71(5):2096-7. PubMed ID: 4525318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance spectroscopy: reinvestigation of carbon-13 spin-lattice relaxation time measurements of amino acids.
    Pearson H; Gust D; Armitage IM; Huber H; Roberts JD; Stark RE; Vold RR; Vold RL
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1599-601. PubMed ID: 165516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of NMR spin-lock polarization transfer in crystalline glycine and spin-lattice relaxation of amino acids.
    Smith JM; Dybowski C; Bai S
    Solid State Nucl Magn Reson; 2005 May; 27(3):149-54. PubMed ID: 15681131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-lattice relaxation in aluminum-doped semiconducting 4H and 6H polytypes of silicon carbide.
    Hartman JS; Berno B; Hazendonk P; Hens P; Ye E; Bain AD
    Solid State Nucl Magn Reson; 2012; 45-46():45-50. PubMed ID: 22727848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of triacetylfusarinine C and ferricrocin productions in Aspergillus fumigatus.
    Szigeti ZM; Szaniszló S; Fazekas E; Gyémánt G; Szabon J; Antal K; Emri T; Balla J; Balla G; Csernoch L; Pócsi I
    Acta Microbiol Immunol Hung; 2014 Jun; 61(2):107-19. PubMed ID: 24939680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton spin lattice relaxation time measurements at 90MHz and 270 MHz.
    Coates HB; McLaughlan KA; Campbell ID; McColl CE
    Biochim Biophys Acta; 1973 May; 310(1):1-10. PubMed ID: 4351061
    [No Abstract]   [Full Text] [Related]  

  • 18. Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes.
    Tian J; Yin Y
    Magn Reson Chem; 2004 Jul; 42(7):641-7. PubMed ID: 15181635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 300 MHz and 600 MHz proton NMR study of a 12 base pair restriction fragment: investigation of structure by relaxation measurements.
    Early TA; Kearns DR; Hillen W; Wells RD
    Nucleic Acids Res; 1980 Dec; 8(23):5795-812. PubMed ID: 6258152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between NMR spin-lattice relaxation times for human tumor tissue at 24 and 6.25 MHz.
    Ekstrand KE; Dixon RL; Scarantino CW; Kovacs CJ
    Med Phys; 1984; 11(6):764-6. PubMed ID: 6513884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.